



# Results of Ultraperipheral Collisions with CMS experiment

### Dipanwita Dutta<sup>1</sup>

### On behalf of the CMS collaboration

<sup>1</sup>Bhabha Atomic Research Centre, Mumbai, India

### Initial Stages 2016, 23<sup>rd</sup> -27<sup>th</sup> May 2016, Lisbon, Portugal

### Outline

- Inroduction and Motivation
- → Exclusive photoproduction of Upsilon in pPb collisions at  $\sqrt{s_{_{NN}}}$  = 5.02 TeV [CMS-FSQ-13-009, https://cds.cern.ch/record/2147428]
  - estimate the t dependence of the cross-section
  - photonuclear cross-section
- → Coherent J/ψ photoproduction in ultra-peripheral PbPb collisions at √s NN = 2.76 TeV with the CMS experiment [CMS-HIN-12-009: http://cds.cern.ch/record/2154908, http://arxiv.org/abs/1605.06966v1]
  - coherent photoproduction with different nuclear breakup mode
  - nuclear PDF and shadowing

Forward physics results at CMS https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsFSQ HIN physics results at CMS https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIN

### The CMS Experiment



#### **Forward detectors:**

- HF, hadron forward calorimeter (11m from IP)
- BSC, beam scintillator counters (in front of HF)
- ZDC (zero degree calorimeter)

3< |η| < 5 3.2< |η| < 4.7 |η| > 8.1

### Introduction: Ultra Peripheral Collisions (UPC)

- Collisions between two hadrons (protons, nuclei) at impact parameter b >> 2R (or R<sub>A</sub>+R<sub>B</sub>)
- Implies no hadronic interaction between hadrons
- → Hadrons interact via their cloud of photons, flux  $\alpha$  Z<sup>2</sup>
- ➔ UPC with pPb

Photon-nuclear interaction

- Elastic VM photoproduction Photon-photon interaction



**Photon-Nuclear Interaction** 





**Photon-Photon Interaction** 

### Motivation: Exclusive upsilon photoproduction in pPb

- $\rightarrow \gamma p$ : Dominant contribution,  $\gamma Pb$ : Small contribution
- Pb (p) → Photoproduction of vector mesons (J/ $\psi$ ,  $\Upsilon$ ) described by the LO pQCD as two gluon exchange between virtual QQbar pair and the target
- Sensitive to the gluon density squared in the nucleon (nucleus)

$$\frac{d\sigma_{\gamma p,A \rightarrow V p,A}}{dt}\Big|_{t=0} = \frac{\alpha_s^2 \Gamma_{ee}}{3\alpha M_V^5} 16\pi^3 [xG(x,Q^2)]^2$$
$$\sigma_{\gamma p \rightarrow Y p} = \frac{1}{b} \frac{d\sigma_{\gamma p,A \rightarrow V p,A}}{dt}\Big|_{t=0}$$

dt

→ Probe poorly known gluon distribution in the proton at low x ( $10^{-4}$  to  $10^{-2}$ ) and search for saturation effects.

$$x = (M_Y / W_{yp})^2$$
,  $W_{yp}^2 = M_Y e^y / \sqrt{s}$ 

Photonuclear cross-section shows power law > dependance with W

$$\sigma \propto W^{\delta}_{\gamma p}$$

**Pb (p)** h

https://cds.cern.ch/record/2147428

CMS-FSQ-13-009





D. Dutta, BARC

### Exclusive upsilon photoproduction

→ 2013 pPb data at 5.02 TeV with 32.6 nb<sup>-1</sup>

CMS-FSQ-13-009 https://cds.cern.ch/record/2147428

- → Offline exclusive pPb →  $\Upsilon$  (γp) →  $\mu^+\mu^-$  signal selection
  - Invariant mass (μμ) : 9.12–10.64 GeV
  - Opposite-sign  $\mu\mu$  pair (final state) originating from commom primary vertex
  - No extra tracks at  $\mu\mu$  vertex to suppress non-exclusive background
  - Upsilon  $p_{\tau}: 0.1-1$  GeV to suppress QED and non-exclusive background
  - Upsilon |y| < 2.2 high muon finding efficiency



D. Dutta, BARC

### Exclusive upsilon photoproduction (data/MC)

Data compared to simulation (contains different contribution)

CMS-FSQ-13-009 https://cds.cern.ch/record/2147428

- $\rightarrow$  Low p<sub>T</sub>: **QED** elastic background, estimated by **STARLIGHT**
- → High  $p_{\tau}$ : Non-exclusive background (DY+ incl. Y + p diss.  $\gamma$ p) estimated from data
- **\rightarrow** STARLIGHT MC :  $\gamma$ Pb(small contribution) and  $\gamma$ p contribution reweighted



Good agreement betweem data and MC

Number of signal events estimated by subtracting all background contributions.

D. Dutta, BARC

InitialStages2016

### Photoproduction cross section as a function of | t |

 The differential cross section is calculated according to

$$\frac{d \sigma_{\rm Y}}{dt} = \frac{N_{sig}^{Unfolded}}{L \times \Delta t}$$

- N<sub>sig</sub>, the background subtracted, unfolded and acceptance corrected number of upsilon events in each | t | bin.
- dσ/dt fitted with an exponential function, provides the information on the transverse profile of the interaction region.



Data is in agreement with ZEUS measurements

ZEUS for Y(1S) **b = 4.3**<sup>+ 2.0</sup> \_\_\_\_\_\_(stat) Phys.Lett.B 708 (2012) 14

InitialStages2016

8

CMS-FSO-13-009

https://cds.cern.ch/record/2147428

### Cross-section as a function of W

The cross-section is estimated by

$$\sigma_{\gamma p \to Y(1S)p} = \frac{1}{\Phi} \frac{d \sigma_{Y(1S)}}{dy}$$

- Rapidity distribution of  $\Upsilon(1S+2S+3S)$  used to estimate  $\sigma_{\gamma p}$ (1S) vs W<sub> $\gamma p$ </sub>
- The cross-section is corrected for muonic branching ratio, feeddown, upsilon (1S) fraction



D. Dutta, BARC

### Motivtion: Coherent photoproduction of $J/\psi$ in PbPb

#### γPb reactions

Coherent vector meson production

- Photons couple coherently to allmost all nucleons, ( $\omega_{max} \approx \gamma/R$ )

$$- < p_{T} > 1/R_{Pb}$$
 60 MeV/c

Incoherent photoproduction,

- Photon couples to a single nucleon
- $< p_{T} > 1/R_{p}$  500 MeV/c

 Columb nuclear dissociation with coherent photoproduction

 Coherent J/ψ photoproduction in PbPb is a promising probe to study the gluon PDF and nuclear shadowing at small Bjorken x

nuclear shadowing at small Bjorken x  $R_g^A(x,Q^2) = \frac{G_A(x,Q^2)}{AG_p(x,Q^2)} - \text{gluon shadowing factor} \begin{pmatrix} \bigcirc & 0.6 \\ 0.8 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4$ 

HIN-12-009: http://cds.cern.ch/record/2154908 http://arxiv.org/abs/1605.06966v1

![](_page_9_Figure_12.jpeg)

10

х

 $10^{-3}$ 

1

 $10^{-}$ 

### Coherent J/ $\psi$ photoproduction in PbPb @ 2.76 TeV

#### **Event Selection :**

HIN-12-009: http://cds.cern.ch/record/2154908 http://arxiv.org/abs/1605.06966v1

**• UPC trigger**: (i) at least one neutron in either ZDC and no activity in both side BSC

→ **Offline**: No HF activity, Muon 1.2 <  $|\eta|$  < 2.4 and 1.2 <  $p_{\tau}$  < 1.8 GeV/c,  $p_{\tau}$ (m<sup>+</sup>m<sup>-</sup>) < 1.0 GeV, 2.6 < M (m<sup>+</sup>m<sup>-</sup>) < 3.5 GeV to select J/ $\psi$ 

![](_page_10_Figure_5.jpeg)

### Nuclear break-up modes with UPC J/ $\psi$

 $X_n 0_n$  single-sided neutron emission with any number of neutrons  $X_n X_n$  double-sided neutron emission with any number of neutrons  $1_n 1_n$  double-sided neutron emission with only one neutron on each side

| J/ $\psi$ with $p_{\rm T} < 0.15  {\rm GeV}/c$ | $X_n X_n / X_n 0_n$ | - | $1_n 1_n / X_n 0_n$ |
|------------------------------------------------|---------------------|---|---------------------|
| Data                                           | $0.36{\pm}0.04$     |   | $0.03 {\pm} 0.01$   |
| STARLIGHT                                      | 0.37                |   | 0.02                |
| GSZ                                            | 0.32                |   | 0.02                |

HIN-12-009: http://cds.cern.ch/record/2154908 http://arxiv.org/abs/1605.06966v1

### Rapidity distribution of $J/\psi$

$$\frac{d\sigma_{X_n 0_n}^{coh}}{dy}(J/\psi) = \frac{N_{coh}^{J/\psi}}{BR(J/\psi \to \mu^+ \mu^-) \cdot \mathcal{L}_{int} \cdot \Delta y \cdot (A \times \varepsilon)^{J/\psi}}$$

- → Coherent yield in X<sub>n</sub>0<sub>n</sub> mode for p<sub>1</sub>< 0.15 GeV/c</p>
- Cross section for X<sub>n</sub>0<sub>n</sub> is scaled up to the total cross section using STARLIGHT
- CMS and ALICE, show good agreement with theoretical models which include considerable nuclear gluon shadowing

HIN-12-009: http://cds.cern.ch/record/2154908 http://arxiv.org/abs/1605.06966v1

![](_page_12_Figure_6.jpeg)

### Summary

- Exclusive upsilon photoproduction
  - The first measurement of exclusive  $\Upsilon$  photoproduction in pPb collisions at 5.02 TeV
  - Data compatible with power-law dependence of  $\sigma(W_{_{\gamma p}})$ , disfavours LO pQCD predictions
  - The differential cross-section  $d\sigma/d|t|$  is in agreement with earlier measurements
- Coherent  $J/\psi$  photoproduction in PbPb collisions
  - First measurement of coherent J/ $\psi$  photoproduction in different nuclear break-up mode
  - Rapidity distribution compatible with considerable nuclear gluon shadowing
- ➔ Probe much lower x vaues with UPC pPb @ 8 TeV and PbPb @ 5.02 TeV collisions
- Expect more exciting results in different exclusive channel (J/ψ,Y,dijet,light-light) in future, with UPC PbPb @ 5.02 TeV collsions of 2015 and pPb in 2016.

#### Thank you

D. Dutta, BARC

InitialStages2016

## Back up

## UPC Triggers for 2013 pPb

- L1 required loosest muon or electromagnetic calorimeter triggers only
- More sophisticated HLT

![](_page_15_Figure_3.jpeg)

- Higher available L1 bandwidth
  - Removed veto on BSC and requirement of ZDC from the the L1 trigger
- Restrict multiplicity to < 7 tracks in the HLT
- HLT Triggers
  - Require at least one fully reconstruction of dimuon candidate
  - Require < 10 pixel tracks in monitoring path

# UPC Triggers for 2011 PbPb

![](_page_16_Figure_1.jpeg)

- L1: hardware trigger system from calorimeters and muon systems only
  - Loosest muon trigger and electromagnetic calorimeter trigger
  - At least one ZDC above threshold
  - No activity on both sides of the interaction point in the BSC detectors, 3 < |η| < 5</li>
- HLT: software trigger system using the full detector
  - Require reconstruction of at least on pixel track

![](_page_16_Picture_8.jpeg)

Systematic uncertainties on the measurements of the *b* of the exponential |t| dependence and the  $d\sigma/dy$  cross section; individual contributions, as well as the total systematic uncertainty are shown.

| Source                            | b   | $d\sigma/dy$ |
|-----------------------------------|-----|--------------|
| Inclusive background modeling     |     | 10%          |
| Exclusive QED background modeling |     | 18%          |
| Muon efficiency (Tag and Probe)   |     | 11%          |
| Unfolding                         | 2%  | 1%           |
| MC modeling                       | 2%  | 7%           |
| Feed-down                         | -   | 2%           |
| Branching ratios                  | -   | 2%           |
| Luminosity                        | -   | 4%           |
| Total                             | 13% | 25%          |

### Systematic uncertainty for exclusive J/ $\psi$ in PbPb @ 2.76 TeV

| Table 1. Summary of Systematic uncertainties. |             |  |
|-----------------------------------------------|-------------|--|
|                                               | Uncertainty |  |
| (1) Neutron tagging                           | 6%          |  |
| (2) HF energy cut                             | 1%          |  |
| (3) signal extraction                         | 5%          |  |
| (4) MC input                                  | 1%          |  |
| (5) ZDC efficiency estimation                 | 3%          |  |
| (6) Tracking reconstruction                   | 4%          |  |
| (7) Luminosity determination                  | 5%          |  |
| (8) Branching ratio                           | 1%          |  |
| Total                                         | 11%         |  |

### Table 1: Summary of systematic uncertainties.