

MEASUREMENT OF EXCLUSIVE DIMUON PRODUCTION IN ULTRA-PERIPHERAL COLLISIONS WITH ATLAS AT THE LHC

Peter Steinberg, for the ATLAS collaboration 25 May 2016 IS2016 Lisbon, Portugal

Portugal - Lisboa - Torre de

ULTRA PERIPHERAL COLLISIONS

- Boosted nuclei are intense source of quasi-real photons
 - ➤ Typically treated using EPA (Weiszacker-Williams)
- ► Photons with $E \le (\hbar c/R) \gamma$ are produced coherently (Z^2)
 - ➤ Up to ~80 GeV at 5.02 TeV

Experiments at RHIC & LHC have begun a systematic investigation of UPC, including:

production of vector mesons (sensitivity to nPDF)

Photo-nuclear:

dijet production (probe nPDF directly)

Photon-photon:

dilepton production
(& other exclusive states)

ULTRA PERIPHERAL COLLISIONS

- Boosted nuclei are intense source of quasi-real photons
 - ➤ Typically treated using EPA (Weiszacker-Williams)
- ► Photons with $E \le (\hbar c/R) \gamma$ are produced coherently (Z^2)
 - ➤ Up to ~80 GeV at 5.02 TeV

ATLAS has first results on this one P

Photon-pomeron:

production of vector mesons (sensitivity to nPDF)

Photo-nuclear:

dijet production (probe nPDF directly)

Photon-photon:

dilepton production (& other exclusive states)

ATLAS EXPERIMENT

Measurement performed primarily with ATLAS muon spectrometer ($|\eta|$ < 2.7, L1 triggering in $|\eta|$ < 2.4) and inner detector ($|\eta|$ < 2.5)

Calorimeter system ($|\eta|$ < 4.9) used to select events with low transverse energy

MBTS scintillators cover forward region $(2.07 < |\eta| < 3.86)$, with inner ring $(2.76 < |\eta| < 3.86)$

Solenoid Magnet

Toroid Magnets

ZDC installed for 2015 but not used in this analysis

SCT Tracker Pixel Detector TRT Tracker

DATA & MONTE CARLO SAMPLES

- ► Uses $L_{\text{int}} = 515 \,\mu\text{b}^{-1}$ of data with a special UPC muon trigger
 - ➤ Loose muon L1 trigger
 - ► Limit of total $E_{\rm T}$ < 50 GeV at L1
 - ➤ Maximum of 1 hit in both MBTS inner rings
 - ➤ At least one track with 400 MeV measured by high-level trigger tracking algorithm
 - ➤ Efficiency of MBTS part measured in data to be 98+1-2%
- ➤ Two different simulated samples used
 - ➤ 1.5M Single muons (2-10 GeV, $|\eta|$ < 3, realistic v_z)
 - ➤ used to determine reconstruction efficiency
 - ➤ 1.5M **STARLIGHT 1.1** events simulating

$$Pb+Pb \rightarrow Pb^{(*)}+Pb^{(*)}+\mu^{+}+\mu^{-}$$

- ➤ Integrated over nuclear excitation states, since no ZDC requirements made
- \triangleright Used for studying vertex efficiency, effect of μ resolution/smearing
- ➤ Truth level used for comparison cross sections

DILEPTONS FROM PHOTON-PHOTON COLLISIONS: THEORY

STARLIGHT cross sections implement formalism from Baltz, et al (PRC80 044902, 2009)

$$\frac{d^2\sigma}{dM_{\mu\mu}dY_{\mu\mu}} = \frac{d^2\mathcal{L}_{\gamma\gamma}}{dMdY} \times \sigma(\gamma\gamma \to \mu\mu)$$

γγ luminosity QED cross section

Lumi.
$$\frac{d^2\mathcal{L}}{dMdY} = \mathcal{L}_{AA} \frac{M}{2} \int_{b_1 > R_A} d^2b_1 \int_{b_1 > R_A} d^2b_2 \ n(k_1, b_1) n(k_2, b_2) P(b) [1 - P_H(b)]$$
 Z⁴~45M.

Nuclear photon flux from EPA:

$$n(k,b) = \frac{d^3N}{dkd^2b} = \frac{Z^2\alpha}{\pi^2kb^2}x^2K_1^2(x)$$
$$x = bk/\gamma.$$

$$QED \qquad \sigma_{\gamma\gamma} = \frac{4\pi\alpha^2}{W^2} \left[\left(2 + \frac{8M^2}{W^2} - \frac{16M^4}{W^4} \right) \ln \frac{W + \sqrt{W^2 - 4M^2}}{2M} - \sqrt{1 - \frac{4M^2}{W^2}} \left(1 + \frac{4M^2}{W^2} \right) \right]$$

EVENT SELECTION

- ➤ For all triggered events (248k), a sequence of selections is applied
 - ➤ All events must come from runs for which detector was in good condition
 - ➤ Two good muons are required
 - ➤ both of which passing "tight" working point selections, requiring good compatibility between muon spectrometer and inner detector measurements
 - \blacktriangleright At least one of the muons must match a Level-1 muon (in cone with $\Delta R < 0.5$)
 - Muons pass fiducial kinematic acceptance, ensuring good performance of ATLAS muon spectrometer

$$ightharpoonup p_{T1}$$
, $p_{T2} > 4$ GeV, $|\eta_1|$, $|\eta_2| < 2.4$, $M_{\mu\mu} > 10$

- ➤ There exists a primary vertex in the event
- ➤ Both muons match good inner detector tracks, which comprise the primary vertex
- ➤ The muons have unlike signs
- ➤ No other good tracks in the vertex than the muons
- ➤ No other good tracks in the event
- ➤ After selections, 12069 events remain

η

Run: 287038 Event: 71765109

2015-11-30 23:20:10 CEST

Highest-mass UPC dimuon event in 5.02 TeV data:

 $M_{\mu\mu}=173~GeV$

CORRECTIONS

➤ To compare cross sections with theory calculations, must correct for detector effects

- ➤ Muon Trigger efficiency (>80%)
- ➤ Muon reconstruction and identification efficiency (>90%)
- ➤ Vertex reconstruction efficiency (~97% in MC)
- Contributions from possible backgrounds
- ➤ Effects from momentum resolution found to be negligible (within ~1%)

► Event weight formed from factorized trigger (T) & reco (R) efficiency correction (each separately as function of p_T and $q \times \eta$)

$$\frac{1}{w} = \epsilon_R(\mu_1)\epsilon_R(\mu_2)(1 - (1 - \epsilon_T(\mu_1))(1 - \epsilon_T(\mu_2)))$$

ACOPLANARITY DISTRIBUTIONS

- Due to nuclear form factor, UPC dimuon distributions should have pair $p_{T\mu\mu}$ ~0 and thus small acoplanarity (Aco = 1 $|\Delta \phi|/\pi$)
- ightharpoonup Aco distributions shown here in 3 rapidity bins, $10 < M_{\mu\mu} < 100 \text{ GeV}$
- ➤ Good agreement with STARLIGHT in the bulk
 - ➤ N.B. STARLIGHT does <u>not</u> incorporate QED final-state radiation (FSR)

ACOPLANARITY & HIGHER-ORDER QED

- \triangleright Radiative corrections $O(\alpha^3)$ involve an additional real photon in the final state
- Expected to broaden $\mu^+\mu^-$ acoplanarity distribution, similar to what is seen in e^+e^- (e.g. TASSO, shown here)
 - ➤ Dotted line positioned at Aco=0.008 (corresponding to 1.44 degrees)

ACCOUNTING FOR ACOPLANARITY TAILS

- ➤ Reported cross sections allow for both scenarios to be true
 - ➤ The tails are all backgrounds: thus we select Aco<0.008, and use the fits shown previously to extrapolate the tail into this region.
 - This is a 2-4% correction, depending on $Y_{\mu\mu}$
 - ➤ The tails are all signals: all events are used, regardless of Aco
- ➤ The average of the results is presented as the central value
 - ➤ The systematic uncertainty is half the difference

SYSTEMATIC UNCERTAINTIES

- ➤ Muon trigger efficiencies
 - ➤ Agreement between minimum-bias and T&P methods good to 5%
- ➤ Reconstruction efficiencies
 - Nominal muon uncertainties, based on systematic assessment of data/MC differences, are 2-4%
 - ► Using looser ("medium") identification requirements gives good agreement for $M_{\mu\mu}$ <30 GeV, and 10% difference for $M_{\mu\mu}$ >30 GeV.
- Unfolding uncertainties
 - ➤ 1% uncertainty assigned due to fluctuations in bin-by-bin factors
- ➤ Vertex efficiency
 - ➤ Data vs. MC gives 2.2% difference. 3% uncertainty assigned
- ➤ Background estimation
 - ➤ Uncertainty includes assumptions that Aco tails are all background, and all signal
- ➤ MC closure is good to 2% level
- ➤ Luminosity uncertainty assigned to be 7%
- ➤ ~10-12% uncertainty overall

RESULTS: SINGLE MUON DISTRIBUTIONS

- Distributions of single muons, after full dimuon selections
- Data only corrected for dimuon trigger efficiency

PAIR CROSS SECTIONS VS. MASS AND RAPIDITY

- ightharpoonup d $\sigma/dM_{\mu\mu}$ shown for $|Y_{\mu\mu}| < 2.4$ and $|Y_{\mu\mu}| > 1.6$
- $ightharpoonup d\sigma/dY_{\mu\mu}$ shown for $10 < M_{\mu\mu} < 20$, $20 < M_{\mu\mu} < 40$, $40 < M_{\mu\mu} < 100$ GeV
- \succ Truth STARLIGHT 1.1 (for γ =2705) shown in solid histograms

RATIOS RELATIVE TO STARLIGHT

- ➤ Ratios relative to STARLIGHT
- > Surprisingly good agreement over full range in $M_{\mu\mu}$ and $Y_{\mu\mu}$
- \triangleright Verifies both overall Z⁴ scaling of $\gamma\gamma$ luminosity & γ spectrum

ALICE & ATLAS RESULTS

Different beam energies, but confirms expectations over >2 orders of magnitude in M_{ll}

CONCLUSIONS & OUTLOOK

- ➤ First ATLAS measurement of high-mass muon pairs from ultra-peripheral collisions in lead-lead collisions at 5.02 TeV
- ➤ Good agreement with STARLIGHT 1.1 calculations
 - ➤ Verification of expected photon flux
 - Precision now limited by lack of higher-order QED calculations
- ➤ These measurements are just the <u>first step</u> in the ATLAS UPC program
 - ➤ Adding ZDC selections will probe impact parameter dependence in more detail
 - ➤ ZDC-tagged events should have smaller impact parameter, and thus harder colliding photon spectra
- ➤ Next steps will be to probe nuclear wave function, including
 - ► Vector mesons (ρ and J/Ψ)
 - ➤ Jet production in photonuclear processes

EXTRA SLIDES

CONNECTION WITH FORWARD NEUTRONS

➤ In principle, the nuclei can exchange <u>additional</u> photons during the collision, exciting one or both nuclei (e.g. nucl-th/0307031) via the giant dipole resonance (GDR) (referred to as "Pb*")

- ➤ Excited nuclei emit one or more neutrons
- ➤ These are more likely for smaller impact parameters between the nuclei
- ➤ However, the impact parameter also controls the two-photon luminosity

- ➤ Higher masses are enhanced more at smaller impact parameters
- ➤ Thus, expect ZDC-tagged events to have harder spectra than events only triggered on the muons
 - ➤ In this measurement we only trigger on the muons, such that the ZDC could be used to independently study this effect
- ➤ The next iteration of this measurement will include ZDC selections

MUO TRIGGER EFFICIENCY

- ➤ Single-muon trigger efficiency measured using 2015 Pb+Pb data
- Measured in two ways
 - ➤ Single muons in minimum-bias HI data
 - \triangleright Coincidence of tight offline muon and Level-1 muon in $\Delta R < 0.5$
 - \triangleright Perform in FCal E_T bins (here using <1000 GeV)
 - ➤ Tag and probe (T&P) in UPC dimuon events
 - For events with two tight muons, at least one of which coincides with Level-1 muon (to trigger event), if the pair has p_T <500 MeV, then the other muon can be used as a probe
- ➤ Good (<5%) consistency between the two, limited by statistical precision of T&P:
 - ➤ Fits performed to minimum-bias data since it has better statistical precision