
Out of equilibrium dynamics: how to deal with it

Alex Buchel

(Perimeter Institute & University of Western Ontario)

InitialStages2016, 25 May 2016



=⇒ Motivation: we would like to understand dynamics of quantum gauge

theories in non-equilibrium setting



=⇒ Motivation: we would like to understand dynamics of quantum gauge

theories in non-equilibrium setting

• Heavy ion collision experiments (QGP dynamics)



=⇒ Motivation: we would like to understand dynamics of quantum gauge

theories in non-equilibrium setting

• Heavy ion collision experiments (QGP dynamics)

• Cosmology (early Universe, signatures of physics beyond SM)



=⇒ Motivation: we would like to understand dynamics of quantum gauge

theories in non-equilibrium setting

• Heavy ion collision experiments (QGP dynamics)

• Cosmology (early Universe, signatures of physics beyond SM)

=⇒ Standard tools:

kinetic theory pertubative QFT lattice formulation



=⇒ Motivation: we would like to understand dynamics of quantum gauge

theories in non-equilibrium setting

• Heavy ion collision experiments (QGP dynamics)

• Cosmology (early Universe, signatures of physics beyond SM)

=⇒ Standard tools:

kinetic theory pertubative QFT lattice formulation

⇑

classical aspects



=⇒ Motivation: we would like to understand dynamics of quantum gauge

theories in non-equilibrium setting

• Heavy ion collision experiments (QGP dynamics)

• Cosmology (early Universe, signatures of physics beyond SM)

=⇒ Standard tools:

kinetic theory pertubative QFT lattice formulation

⇑ ⇑

classical aspects weak coupling



=⇒ Motivation: we would like to understand dynamics of quantum gauge

theories in non-equilibrium setting

• Heavy ion collision experiments (QGP dynamics)

• Cosmology (early Universe, signatures of physics beyond SM)

=⇒ Standard tools:

kinetic theory pertubative QFT lattice formulation

⇑ ⇑ ⇑

classical aspects weak coupling static aspects
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=⇒ Advocate: gauge theory/string theory (holographic) correspondence

ideally suited to ask dynamical questions:

• How to bring system (quantum gauge theory) put of equilibrium in a

controlled setting? (preparation of non-equilibrium state)

• How its dynamics differ from (adiabatic) hydrodynamic approximation?

• How (how fast) does the system relax?

• Evolution of gauge invariant observables
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=⇒ Caveats:

Gauge/string correspondence: the gauge theories practically accessible

within the holographic framework are not QCD:

• the gauge group

SU(3) −→ SU(N) , N → ∞

• matter representation: 3 families of quarks in the fundamental

representation −→ (typically) matter in adjoint/bifundamental

representation, with additional scalar fields (in the same representation

and masses as quarks), more massless scalars and fermions in the adjoint

representation. (All this is the consequence of the fact that the gauge

theories models are supersymmetric, or their close cousins)

• no asymptotic freedom (must always be at strong coupling over the full

energy range)



=⇒ Not to despair!

• Often, strongly coupled conformal dynamics is a useful approximation

•
1

3
≈ 1

N
, N ≫ 1

• some aspects of the gauge theory dynamics are universal

• sometimes, there is no other choice but to use holography
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Top down/bottom up approaches:

• It is easy to generate (simple) phenomenological models of holographic,

and use the holographic dictionary to compute stuff — the price is that

we don’t know what are we doing, and more importantly we don’t know

if ’singularities’ that arise are physical or shortcomings of the

phenomenology

• Real string theory examples of holography are far and between — know

exactly what theory we are talking about, sometimes can do precision

tests of holography, real physics, but obviously more restrictive (more

difficult to ’engineer’ phenomena/features of interest)
– top-down non-conformal examples exists (mass deformation of 4d conformal gauge theories)

– top-down models with confinement/chiral symmetry breaking exist (quiver gauge theories)

=⇒ Often, not much difference between ’real’ and ’phenomenological’

holography (gravitational universality)
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=⇒ Caveats:

Issues with holographic experimental set-ups of dynamical evolution:

• it is difficult to describe initial non-equilibrium state (need higher-point

correlation functions of operators)

• even it we would know the state from the QFT perspective exactly, in

general, we would not know how to encode it in holography

=⇒ It is possible to ’prepare’ the non-equilibrium state by changing in a

time-dependent fashion QFT parameters (masses, background metric,

external magnetic field, etc.) from equilibrium state — the philosophy

behind holographic quantum quenches



Outline of the talk:

• Holographic thermal equilibrium

conformal gauge theory plasma at strong coupling

non-conformal gauge theory plasma at strong coupling

• Holographic hydrodynamics

shear viscosity

bulk viscosity

• Physics far from equilibrium

quantum quenches

role of nonhydrodynamic modes

• Equilibration in (non-)CFT gauge theory plasmas

• Conclusions and future directions



=⇒ Consider N = 4 supersymmetric SU(N) Yang-Mills theory

The field content of N = 4 SYM theory includes (all in the adjoint

representation):

• the gauge field Aµ

• 4 Majorana fermions ψa

• 3 complex scalars φi

• the gauge coupling gYM is exactly marginal

• L is Lagrangian density of the theory, completely constraint by maximal

N = 4 supersymmetry



=⇒ There is a useful holographic dual of this theory when

• N → ∞ and g2YM → 0 with ’t Hooft coupling λ ≡ g2YMN kept constant

• λ≫ 1

=⇒ the holographic dual is 5d Einstein gravity with the negative

cosmological constant

S5 =
1

16πG5

∫

d5x
√
−g (R + 12) , G5 =

π

2N2

SYM thermal states ⇐⇒ black holes of S5



=⇒ Thermal properties of BH are interpreted as thermal properties of

strongly coupled N = 4 SYM plasma:

• the energy density

ϵ =
3

8
π2N2T 4

• the pressure

p =
1

8
π2N2T 4

• the entropy density

s =
1

2
π2N2T 3

=⇒ Note the 3

4
factor between the weak and strong coupling

ϵ =
3

4
ϵSB



• QCD thermodynamics from lattice; (Karsch, Laermann,

hep-lat/0305025). The plateau is ∼ 80% of the SB result — close to 3/4

in SYM thermodynamics
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=⇒ From A.Bazarov et.al (HotQCD Collaboration), arXiv:1407.6387:
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=⇒ The violation of the conformality,

ϵ− 3p

ϵ
∼ 50%

at the maximum
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describe QGP?

=⇒ how to go beyond CFT in top-down:

on a gauge theory side (N = 2∗ model)

δL = −2

∫

d4x
[

m2 Ob +mOf

]

where

Ob =
1

3
Tr

(

|φ1|2 + |φ2|2 − 2 |φ3|2
)

Of = −Tr

(

iψ1ψ2 −
√
2gYM φ3[φ1,φ

†
1] +

√
2gYM φ3[φ

†
2,φ2]

+h.c.

)

+
2

3
mTr

(

|φ1|2 + |φ2|2 + |φ3|2
)



So, should be use nonconformal models of gauge/gravity correspondence to

describe QGP?

=⇒ how to go beyond CFT in top-down:

on a gauge theory side (N = 2∗ model)

δL = −2

∫

d4x
[

m2 Ob +mOf

]

where

Ob =
1

3
Tr

(

|φ1|2 + |φ2|2 − 2 |φ3|2
)

Of = −Tr

(

iψ1ψ2 −
√
2gYM φ3[φ1,φ

†
1] +

√
2gYM φ3[φ

†
2,φ2]

+h.c.

)

+
2

3
mTr

(

|φ1|2 + |φ2|2 + |φ3|2
)

=⇒
⟨Tµ

µ ⟩ = −ϵ+ 3p = −2m⟨Of ⟩ −m2⟨Ob⟩
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on the gravity side:

S =
1

16πG5

∫

d5x
√
−g (R+ 12)

⇕

S =
1

16πG5

∫

d5x
√
−g

(

R− 12(∂α)2 − 4(∂χ)2 − V (α,χ)
)

• gravitational scalar α⇔ Ob (dimension ∆ = 2, bosonic mass term)

• gravitational scalar χ⇔ Ob (dimension ∆ = 3, fermionic mass term)

•
V (α,χ) = −12 +O(α2,χ2)



=⇒ From N = 2∗ BH thermodynamics:

• (L) Trace of the energy-momentum tensor normalized to the energy

density of N = 4 SYM (ϵ0 = 3

8
π2N2

c T
4 with Nc denoting the number of

colors) as a function of m/T . The results indicate that,

thermodynamically, the effects of the conformal symmetry breaking are

the strongest at m/T ≈ 4.8.

• (R) Trace anomaly in deep IR — approach to a CFT5



=⇒ Alternative top-down model for breaking scale invariance is

Klebanov-Strassler (KS) gauge theory plasma

Some notable differences between N = 2∗ and KS models:

in N = 2∗ the scale invariance is broken explicitly (mass terms); in the

scale invariance is broken by quantum effects (nonzero β-function)

unlike N = 2∗, KS gauge theory confines in the IR with the spontaneous

chiral symmetry breaking

=⇒ How do we like compare different non-conformal models with QCD?



=⇒ (Proposed) general framework for comparing the thermodynamics of the

models is the Θ − vs.− δ plane, where

Θ ≡ ϵ− 3P

ϵ
, δ ≡ 1

3
− c2s

with cs being the speed of sound waves in plasma,

c2s =
∂P

∂ϵ

=⇒ The advantage of this framework is that

• is not sensitive as to how exactly is the scale invariance broken

• no need to relate N and T

• we can compare with lattice QCD
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δ = 1

3
− c2s

Θ = ϵ−3p
ϵ

• lattice QCD (the red dots)

• N = 2∗ (the solid green line)

• KS gauge theory (the solid blue line)

• vertical lines: T = 0.3GeV (red), phase transitions in KS (blue)



=⇒ Over the years, the holographic dictionary has been developed to extract

⟨Tµν⟩ of the gauge theory plasma as the series of the local-velocity gradients

Relativistic hydrodynamics (without conserved charges/anomalies):

Tµν = ϵ uµuν + p ∆µν + Tµν
hydro

where

uµuµ = −1 , ∆µν = gµν + uµuν , uµ∆
µν = 0

Tµν
hydro = −η

[

∆µλ

(

∇λu
ν +∇νuλ − 2

3
δνλ∇αu

α

)]

− ζ

[

∆µν ∇αu
α

]

• η — shear viscosity

• ζ — bulk viscosity
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=⇒ from holographic computations:

shear viscosity (Kovtun-Son-Starinets,. . . )

η

s
=

1

4π

(

!

kB

)

• universal for all gauge theories with a holographic dual, provides the

equilibrium state is isotropic and homogeneous

• the viscosity bound
η

s
≥ 1

4π
can be violated

– arbitrarily close to zero in holographic phenomenological models

– to leading order in O
(

1

N

)

in top-down holographic examples

– violated in anisotropic plasma (top-down/bottom-up models) at O(1)
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bulk viscosity in holography is model dependent; for large class (but not

all) models
ζ

η
≥ 2

(

1

3
− c2s

)

• the bound is saturated if one reduces a conformal hydrodynamics in

d > 3 (spatial) to d = 3 dimensional hydrodynamics:

ζ

η
= 2

(

1

3
− c2s

)

= 2

(

1

3
− 1

D

)

• in N = 2∗ plasma
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− c

2
s

)

ζ
η

m
T

≈ 12

m
T

→ +∞



• in KS plasma: ζ
η = 4π ζ

s ,

0.5 0.6 0.7 0.8 0.9 1.0
0.02
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0.04

0.05

0.06

0.07

ζ
s

T
Λ

• dashed blue: the bulk viscosity bound

• dashed vertical: Tc for the deconfinement transition in KS
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=⇒ Physics far from equilibrium

• Recall, we deformed N = 4 CFT with

δL = −2

∫

d4x
[

m2 Ob +mOf

]

• Now,

m → m(t) with lim
t→±∞

m(t) = const

then:

– we start with the equilibrium state in the infinite past

– can use a profile m(t) to bring the system out of equilibrium in a

controlled fashion

– expect to reach the equilibrium state in the infinite future



• This can be implemented in holography in precise manner: specifically,

we choose

m =

(

1

2
+

1

2
tanh

t

T

)

×m0 , T =
α

Tinitial
, m0 = const

• Note:

α≪ 1 =⇒ fast quenches

α≫ 1 =⇒ slow (adiabatic) quenches

• Once mass becomes time-dependent,

Ob(t) , Of (t)

as well as ϵ(t) and p(t)



=⇒ Introducing τ ≡ t
T :

!6 !4 !2 2 4 6

!0.6

!0.5

!0.4

!0.3

!0.2

!0.1

0.1

τ

Of (τ)

!5 5

!0.8

!0.6

!0.4

!0.2

τ

Ob(τ)

• Evolution of the normalizable component Of (left panel) and Ob (right

panel) during the quenches with α = 1. The dashed red lines represent

the adiabatic response.

• As τ → +∞ the expectation values approach their equilibrium values in

a damped-oscillatory manner (More on this later).



=⇒ How do we characterize equilibration time?

Introduce

δneq(τ) ≡
∣

∣

∣

∣

O∆(τ)− [O∆(τ)]adiabatic
[O∆(τ)]adiabatic

∣

∣

∣

∣

,

where [O∆(τ)]adiabatic is the adiabatic response that can be computed

analytically.

Note,

lim
τ→±∞

δneq(τ) → 0

as at early/late times the system is in equilibrium.



=⇒ In practice,

!6 !4 !2 2 4 6

0.5

1.0

1.5

2.0

τ
α

τex
α

τrelax

α

δneq

Extraction of the excitation/equilibration rates for α = 1 quench. The

horizontal green line is the threshold for excitation/equilibration which we

define to be 5% away from local equilibrium as determined by δneq. The

dashed red lines indicate the earliest and latest times of crossing this

threshold, which we denote as τex (for excitation time) and τrelax (for

equilibration time), respectively.
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lnα

ln τrelax

α
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lnα

ln τrelax

α

⇑ ⇑

Of (t) Ob(t)

=⇒ Going to small α (lnα→ −∞) corresponds to preparing the state with

an abrupt quench of a dim-∆ operator. The dashed scaling line translates

into a universal relaxation time:

trelax ∼ 1

T

independent of α!



=⇒ We can do more:
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Behavior of the response coefficients versus time for representative fast

quenches. As is evident in the picture, the same quasinormal mode governs

the dynamics very quickly after the quench:

∆ = 3 :
ω

2πT

∣

∣

∣

∣

fit

≃ (1.095− i 0.87) ,
ω

2πT

∣

∣

∣

∣

BH

≃ (1.099− i 0.879)

∆ = 2 :
ω

2πT

∣

∣

∣

∣

fit

≃ (0.64− i 0.4) ,
ω

2πT

∣

∣

∣

∣

BH

≃ (0.644− i 0.411)
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Lowest quasinormal modes of the black hole in the gravitational dual control

the relaxation in strongly coupled gauge theory plasma

• Such feature was also observed in various other holographic examples



=⇒ Moral of the story:

Lowest quasinormal modes of the black hole in the gravitational dual control

the relaxation in strongly coupled gauge theory plasma

• Such feature was also observed in various other holographic examples

=⇒ To which extend the lowest quasinormal mode is universal? (universality

in relaxation)?
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• N = 2∗ plasma — the solid green line

• KS plasma — the solid blue line

• red line represents δ in QCD at T = 0.3GeV

• vertical blue lines represent the phase transitions in KS plasma



Conclusions and future directions:

I argued that holographic correspondence is a useful tool in understanding

non-equilibrium properties of strong coupled gauge theory plasma:

• it is possible to formulated correspondence in precise manner for (limited

class) of non-conformal gauge theories

• η
s
is small, and universal

• ζ
s ! 0.1

– it is challenging to obtain large bulk viscosity in holography

• one can use holography to reliably prepare non-equilibrium states via

quantum quenches from equilibrium states and study

– relaxation of local (O∆, Tµν) and nonlocal (2-point correlation

functions, entanglement entropy) operators

– higher-order hydrodynamic transport coefficients

– validity of adiabatic/hydrodynamic approximation

– role (and universal character) of non-hydrodynamic modes



In the future:

• (short term) understanding collective phenomena in small systems

• (long term) building up holographic dictionary and learning how to

better model initial states (the process) of a collision

Thank you!



=⇒ Extra slides



The response of O∆ depends on ∆:

for fast quenches, α is small,

-6 -4 -2 0 2 4 6
τ/α

-1

-0.5

0

0.5

1

α
2 p 1,

2

α = 1
α = 0.5
α = 0.1
α = 0.05
α = 0.01
α = 0.005
adiabatic

-2 0 2 4
τ

-4
-3.5
-3

-2.5
-2
-1.5
-1

-0.5
0
0.5
1

p 1,
0

α = 1
α = 0.5
α = 0.1
α = 0.05
α = 0.01
α = 0.005
adiabatic

⇑ ⇑

α2Of (t) Ob(t)

=⇒ The response is quite different!
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q
2πT

Imω
Imωq=0

and Reω
Reωq=0

Momentum dependence of the lowest quasinormal mode of the transverse

traceless fluctuations of the stress-energy tensor in KS gauge theory plasma

at the ultraviolet fixed point (solid lines), the deconfinement phase transition

(dashed lines), and the chiral symmetry breaking phase transition (dotted

lines). The green/red lines represent the real/minus imaginary parts of the

frequencies. The data is normalized to zero momentum values of the

frequencies.


