Multi-parton and multi-nucleon correlations: theory

Christian Bierlich

Lund University

May 27, 2016
3rd International Conference on the Initial Stages in High-Energy
Nuclear Collisions

LUND
UNIVERSITY

Multiparton Interactions, from pp to pA

- General purpose event generators are built on MPI models.
- MPI description of pp events are long established...
- ...transfer to pA and AA is desirable if feasible.
- Cannot go to measurables without FS effects!
- Here: Microscopic QCD inspired models, could also consider hydro.
- This talk:
(1) The Pythia and DIPSY models.
(2) Final state effects: Ropes and junctions.
(3) Beyond pp, fluctuations in Glauber model(s).
(4) Particle production in pA.
(6) Outlook.

- Several partons taken from the PDF.
- Hard subcollisions with $2 \rightarrow 2$ ME:

Figure T. Sjöstrand

$$
\frac{d \sigma_{2 \rightarrow 2}}{d p_{\perp}^{2}} \propto \frac{\alpha_{s}^{2}\left(p_{\perp}^{2}\right)}{p_{\perp}^{4}} \rightarrow \frac{\alpha_{s}^{2}\left(p_{\perp}^{2}+p_{\perp 0}^{2}\right)}{\left(p_{\perp}^{2}+p_{\perp 0}^{2}\right)^{2}}
$$

- Momentum conservation and PDF scaling.
- Ordered emissions: $p_{\perp 1}>p_{\perp 2}>p_{\perp 4}>\ldots$ from:

$$
\mathcal{P}\left(p_{\perp}=p_{\perp i}\right)=\frac{1}{\sigma_{n d}} \frac{d \sigma_{2 \rightarrow 2}}{d p_{\perp}} \exp \left[-\int_{p_{\perp}}^{p_{\perp i-1}} \frac{1}{\sigma_{n d}} \frac{d \sigma}{d p_{\perp}^{\prime}} d p_{\perp}^{\prime}\right]
$$

- Number distribution narrower than Poissonian (momentum and flavour rescaling).

Color reconnection

- Many partonic subcollisions \Rightarrow Many hadronizing strings.
- But! $N_{c}=3$, not $N_{c}=\infty$ gives interactions.
- Easy to merge low $-p_{\perp}$ systems, hard to merge two hard- p_{\perp}.

$$
\mathcal{P}_{\text {merge }}=\frac{\left(\gamma p_{\perp 0}\right)^{2}}{\left(\gamma p_{\perp 0}\right)^{2}+p_{\perp}^{2}}
$$

Figure T. Sjöstrand

- Actual merging is decided by minimization of "potential energy":

$$
\lambda=\sum_{\text {dipoles }} \log \left(1+\sqrt{2} E / m_{0}\right)
$$

Junction CR christiansen and Skands arXiv:1505.01681 [hep-ph]

- New CR allows for more configurations.
- Selection relies on λ-measure

Ordinary string reconnection

Triple junction reconnection

Double junction reconnection
\qquad q

(qq: $1 / 3, \mathrm{gg}: 10 / 64$, model: $2 / 9$)

Zipping reconnection

(Depends on number of gluons)

The DIPSY model Flessburg et al. axtiv:1103, 4321 [hep-ph]

- A very different view on MPIs, built on Mueller dipole model (Mueler and Patel arXiv:hep-ph/9403256).
- Proton structure built up dynamically from dipole splittings:

Model implemented as a MC event generator Dipole evolution in Impact Parameter Space and rapiditY.

$$
\frac{d P}{d Y}=\frac{3 \alpha_{s}}{2 \pi^{2}} d^{2} \vec{z} \frac{(\vec{x}-\vec{y})^{2}}{(\vec{x}-\vec{z})^{2}(\vec{z}-\vec{y})^{2}}, f_{i j}=\frac{\alpha_{s}^{2}}{8}\left[\log \left(\frac{\left(\vec{x}_{i}-\vec{y}_{j}\right)^{2}\left(\vec{y}_{i}-\vec{x}_{j}\right)^{2}}{\left(\overrightarrow{x_{i}}-\overrightarrow{x_{j}}\right)^{2}\left(\overrightarrow{y_{i}}-\overrightarrow{y_{j}}\right)^{2}}\right)\right]^{2}
$$

- MPIs are included by construction.
- Formalism generalizes to HI (very time consuming).
- No PDFs (also: no quarks, no ME \Rightarrow few hard jets).

Saturation and swings

- In DIPSY MPIs are fluctuations going on shell in interactions.
- Similar to saturation in another frame: Initial state swing.
- Multiple scatterings of a single dipole \Leftrightarrow Several swings (Avsar, E:
arXiv:0709.1371 [hep-ph])
- Re-absorption of non-interacting branches.

- Initial state swing competes with emission.
- All gluons get index from 1 to N_{c}^{2}, reconnect if compatible with:

$$
\frac{\mathcal{P}_{(12)(34)}}{\mathcal{P}_{(14)(32)}}=\frac{\left(\vec{x}_{1}-\vec{x}_{4}\right)^{2}\left(\vec{x}_{3}-\vec{x}_{2}\right)^{2}}{\left(\overrightarrow{x_{1}}-\overrightarrow{x_{2}}\right)^{2}\left(\overrightarrow{x_{3}}-\overrightarrow{x_{4}}\right)^{2}}
$$

Ropes, swings and junctions cbetal. axtiv:1412.6259 hhep-ph]

- Final state interactions: Many overlapping strings (like CR) Old in HI: Biro et al: Nucl.Phys. B245 (1984) 449-468.
- $\operatorname{SU}(3)$ multiplet structure decided by random walk.
- Effects implemented from perturbative (parton shower) to non-perturbative (hadronization) scales.

- Three options
(1) Highest multiplet (higher string tension).
(2) Lower multiplet (junction+higher st.).
(3) Singlet Final State swing (similar to CR).

Data comparisons Data from ATLAS: arxiv:1012.5104 [hepe-ex]

- Total multiplicity and $\left\langle p_{\perp}\right\rangle\left(N_{c h}\right)$ from MPI and CR.
- Notice how DIPSY no CR gets $N_{c h}$ dependence.
- DIPSY has to many high- p_{\perp} events in general.

- Strange enhancement: confirmed, baryons are not.
- Possible solution: Stepwise production mechanism for baryons.
- Flowlike behaviour from junction model.

Ropes, CR and mass splitting

- Influenced heavily by FS effects.
- Tuning and quantitative comparison.
- Remember: Tuning \neq
 fitting.

From pp to pA

- Wounded quarks \approx MPIs Biatas: arxiv:1202.4599 [hep-ph]
- Particle production time $1 / m_{\perp} \Rightarrow$ absorptive pp scaling at large p_{\perp}.

$$
L_{\text {probe }}=v \tau \approx \frac{\sinh y_{l a b}}{\sqrt{m^{2}+p_{\perp}^{2}}}<L_{\text {structure }}
$$

- Standard Glauber approach: interaction through absorptive channels.
- Right for high p_{\perp}, multiplicity will be wrong.
- Wounded nucleons updated to include fluctuations.
- Optical theorem in impact parameter space:

$$
\begin{gathered}
T \equiv-i A_{e l} \Rightarrow \frac{d \sigma_{e l}}{d^{2} b}=\langle T(b)\rangle^{2} \\
\frac{d \sigma_{t o t}}{d^{2} b}= \\
2\langle T(b)\rangle, \frac{d \sigma_{a b s}}{d^{2} b}=2\langle T(b)\rangle-\langle T(b)\rangle^{2}
\end{gathered}
$$

The wounded cross section

- Fluctuations related to diffractive excitations: Good-Walker.

$$
\begin{gathered}
\frac{d \sigma_{t o t}}{d^{2} b}=2\langle T\rangle_{t, p}, \frac{d \sigma_{e l}}{d^{2} b}=\langle T\rangle_{t, p}^{2}, \frac{d \sigma_{S D,(p \mid t)}}{d^{2} b}=\left\langle\langle T\rangle_{(t \mid p)}^{2}\right\rangle_{(p \mid t)}-\langle T\rangle_{p, t}^{2} \\
\frac{d \sigma_{D D}}{d^{2} b}=\left\langle T^{2}\right\rangle_{p, t}-\left\langle\langle T\rangle_{t}^{2}\right\rangle_{p}-\left\langle\langle T\rangle_{p}^{2}\right\rangle_{t}+\langle T\rangle_{p, t}^{2}
\end{gathered}
$$

- In DIPSY: $T=1-\exp \left(-\sum_{i j} f_{i j}\right)$, and we can calculate:

$$
\frac{d \sigma_{w}}{d^{2} b}=\frac{d \sigma_{a b s}}{d^{2} b}+\frac{d \sigma_{S D, t}}{d^{2} b}+\frac{d \sigma_{D D}}{d^{2} b}=2\langle T\rangle_{p, t}-\left\langle\langle T\rangle_{t}^{2}\right\rangle_{p}
$$

- Contributions to "centrality" observable: absorptively wounded, diffractively wounded, NOT elastically scattered.

Glauber-Gribov fluctuations (GG or GGCF)

- Fluctuations included in Glauber-Gribov formalism Alvioli and Strikman: arXiv:1301.0728 [hep-ph]:
- Parameterization of total cross section:

$$
\sigma_{t o t}=\int d \sigma \sigma P_{t o t}(\sigma)=\int d \sigma \rho \frac{\sigma^{2}}{\sigma+\sigma_{0}} \exp \left[-\frac{\left(\sigma / \sigma_{0}-1\right)^{2}}{\Omega^{2}}\right]
$$

- Usage: With black disk, scale to total inelastic $\sigma_{i n}=\lambda \sigma_{\text {tot }}$.
- From arguments above, should be σ_{w}
- BUT! Setting $\sigma_{\text {Glauber }}=\sigma_{w}$ in GG/GGCF is not enough, no fluctuations in projectile.
- Must also distinguish between diffractively excited wounded and absorptive wounded.
- Scale GGCF to $\sigma_{a b s}$ and compare to DIPSY, where now:

$$
\begin{aligned}
\sigma_{w, D I P S Y} & \propto \sum_{p} \sum_{b}\left[\sum_{t} 2 T(b)-\left(\sum_{t} T(b)\right)^{2}\right] \\
\sigma_{a b s, D I P S Y} & \propto \sum_{p} \sum_{b} \sum_{t}\left[2 T(b)-T^{2}(b)\right]
\end{aligned}
$$

Wounded nucleons

- Distinguish: Simple two-radius model, reproduce $\sigma_{a b s}, \sigma_{e l}, \sigma_{D X}$ and $\sigma_{D D}$ with four parameters:

$$
T(b)=\alpha \Theta\left(r_{p}+r_{t}-b\right)
$$

- Crude fluctuations does the job.

Full final states: String-like interaction model

- One absorptive collision contributes to full rapidity span.
- The rest contributes similarly to diffrative excitation (plus a colour exchange).
- Full collision as a sum of Pythia 8 events.

Data comparison

Centrality 60-90

Data comparison

Centrality o-1

Data comparison

The end

- MPI frameworks diverse and developed in pp.
- Correlation effects by additional IS and FS effects not fully understood.
- New data continues to drive development - important: means of comparison.
- Extending MPI picture to pA and AA desirable but still immature.
- Several complementary approaches to different parts of collision.
- Lesson from pp: Common interfaces are neccesary!

Bonus slides

String Hadronization hep-ph/6003175

- Non-perturbative phase of final state.
- Breaking/tunneling with $\mathcal{P} \propto \exp \left(-\frac{\pi m_{\perp}^{2}}{\kappa}\right)$ gives hadrons.
- Left-right symmetry in the breaking gives

$$
f(z) \propto z^{-1}(1-z)^{a} \exp \left(\frac{-b m_{\perp}}{z}\right)
$$

- a and b related to total multiplicity.
- Flavours determined by relative probabilities:

$$
\rho=\frac{\mathcal{P}_{\text {strange }}}{\mathcal{P}_{\mathrm{u} \text { or d }}}, \xi=\frac{\mathcal{P}_{\text {diquark }}}{\mathcal{P}_{\text {quark }}}
$$

- Probabilities are related to κ via tunneling equation.

Change of string tension

- Field changes when strings overlap - Simple Regge: $2 \pi E / I=\kappa$.
- Effective string tension: $\kappa \mapsto \tilde{\kappa}=h \kappa$ from number of overlapping strings.
- Electrodynamics: Principle of superposition, simple.
- QCD: Not so simple. Secondary Casimir operator of multiplet.

$$
\kappa \propto C_{2} \Rightarrow h=\tilde{\kappa} / \kappa=\frac{C_{2} \text { (multiplet) }}{1 \mathrm{GeV} / \mathrm{fm}}
$$

- Confirmed on the lattice, static case.

Example axiv:1412.6259 hepeph]

- The simplest example: Two $q \bar{q}$ pairs act coherently.
- Two distinct possibilities:

Case (a), $c_{1}=c_{2}$:

Case (b), $c_{1} \neq c_{2}$:

Effect on hadronization parameters

- All parameters related through string tension.
- ρ (strange) and ξ (baryon) are very sensitive.

- Large effect on hadronic flavours.
- Smaller effect on hadron p_{\perp} and multiplicity (tunable).

DIPSY and HI

Highest multiplet

- All higher multiplets represents a coherent interaction.
- Fundamental quantum numbers p and q from recursion relations.
- Number of random (anti)-triplets added decided by overlaps.

$$
\begin{gathered}
\{p, q\} \otimes \overrightarrow{3}=\{p+1, q\} \oplus\{p, q+1\} \oplus\{p, q-1\} \\
\underbrace{\boxminus \otimes \boxminus \otimes \ldots \otimes \square}_{\text {All anti-triplets }} \underbrace{\otimes \square \otimes \square \otimes \ldots \otimes \square}_{\text {All triplets }}
\end{gathered}
$$

- Transform to $\tilde{\kappa}=\frac{2 p+q+2}{4} \kappa$ and $2 N=(p+1)(q+1)(p+q+2)$.
- N (multiplicity of the multiplet) serves as a state's weight.
- String hadronized with $\tilde{\kappa}$.

Junction handling

- Extra junctions handled through simplistic, popcorn-based approach.

- Extra parameter for colour fluctuations (no data handle).
- Better: Dynamical handling in a "swing".

- Related: recent Pythia 8 model arxiv:1505.01681 [hep-ph]

The singlet swing

- Singlets are handled already in the FS shower (Ariadne).
- Matching colours swing with each other, competing w. emission.

$$
\frac{d P_{e}}{d \ln \left(p_{\perp}^{2}\right)} \approx d y \frac{C_{F} \alpha_{s}}{2 \pi} \text { and } \frac{d P_{r}}{d \ln \left(p_{\perp}^{2}\right)}=\lambda \frac{\left(\overrightarrow{p_{1}}+\overrightarrow{p_{2}}\right)^{2}\left(\overrightarrow{p_{3}}+\overrightarrow{p_{4}}\right)^{2}}{\left(\overrightarrow{p_{1}}+\overrightarrow{p_{4}}\right)^{2}\left(\overrightarrow{p_{2}}+\overrightarrow{p_{3}}\right)^{2}}
$$

Singlet swing and LEP Data: סELPHH

- Comes in already at perturbative level.
- Retuning of shower is neccesary.
- No large difference, $p_{\perp}^{\text {out }}$ somewhat improved.

Flavour ratios - LEP

- String at LEPs. Agreement with data.
- Jet universality: Gain predictive power in $p p$ by fixing parameters here.

Flavour ratios - LHC Dasa: cns and alce

- Ropes at LHC. Overall better agreement, problem with p / π.
- Integrated quantities, need per event quantities as function of activity.

Results from ALICE cern seminar, 10-11-2015

- Strange enhancement is confirmed, baryonic is not.
- Further work: Baryon enhancement and junctions.

ALT-PHRL $=98972$

