Signatures of collectivity in small systems

Wei Li (Rice University)

Initial Stages, May 23, 2016

Signatures of <u>collectivity</u> in <u>small</u> systems

Wei Li (Rice University)

Initial Stages, May 23, 2016

What is collectivity?

a group of entities that share a common property

What is collectivity?

a group of entities that share a common property

Collectivity ------ Emergent phenomena of a many-body interacting system

What is collectivity?

a group of entities that share a common property

Collectivity ------ Emergent phenomena of a many-body interacting system

What is the mechanism driving the collectivity?

Long-range

PLB 724 (2013) 213

Collective

PRL 115 (2015) 012301

Long-range Initial stage

PLB 724 (2013) 213

Collective

PRL 115 (2015) 012301

Long-range Initial stage

PLB 724 (2013) 213

Collective Interactions

PRL 115 (2015) 012301

V.S.

Long-range Initial stage

PLB 724 (2013) 213

Collective Interactions

Two scenarios

Initial spatial ε_s + final interactions (hydro., transport) Initial momentum ε_p from initial interactions (CGC glasma, etc.)

"Perfect" fluid paradigm in AA systems

Long-range collectivity in AA (large)

♦ Described by nearly ideal (η /s → 0) hydrodynamics

"Perfect" fluid paradigm in AA systems

Long-range collectivity in AA (large)

- \diamond Described by nearly ideal ($\eta/s \rightarrow 0$) hydrodynamics
- Connection to initial geometry well established

"Perfect" fluid paradigm in AA systems

Long-range collectivity in AA (large)

- \diamond Described by nearly ideal ($\eta/s \rightarrow 0$) hydrodynamics
- Connection to initial geometry well established

No QGP fluid expected in "small" systems (pp, pA)!

No QGP fluid expected in "small" systems (pp, pA)! But what if making it denser (reducing λ_{mfp})?

No QGP fluid expected in "small" systems (pp, pA)!
 But what if making it denser (reducing λ_{mfp})?
 → a smaller but hotter QGP fluid?!

The "ridge" in pp

Mini-QGP fluid (L ~ 1 fm) in pp?

The "ridge" tsunami in pPb at the LHC

The "ridge" tsunami in pPb at the LHC

What is the origin of "ridge" in small systems?

Smallness is relative

Smallness is relative

"Absolute smallness" only w.r.t. a fundamental scale

Smallness is relative

"Absolute smallness" only w.r.t. a fundamental scale

Is there a fundamental scale in QCD?

> Not obvious with point-like partons $(\lambda_{mfp} \sim 1/T)$ > "Quasi-particles" of sQGP?

Endrodi et al., 0710.4197

Weakly-coupled regime reachable in principle, but not in practice

HM pp and pA well in the "fluid" regime

 $\Leftrightarrow v_2\{4\} \approx v_2\{6\} \approx v_2\{8\} \approx v_2\{\infty\}$

Striking similarities between "big" and "small"

Faster increase in $< p_T >$ for heavier species ($\Delta < p_T > \sim m < \beta_T >$)

Simultaneous Blast-Wave fits to K_0^{s} , Λ and Ξ^{-}

Simultaneous Blast-Wave fits to K_0^{s} , Λ and Ξ^{-}

Stronger velocity boost for smaller system

Larger mass splitting of v_2 in pPb

Larger mass splitting of v₂ in pPb

At a similar N_{trk}, smaller hydro. system more explosive!? Shuryak, Zahed, PRC 88, 044915 (2013)

Clear evidence of collectivity observed, similar for both "small" and "large" systems

- ✓ Multi-particle correlation v_n{m}
- ✓ Mass dependence of spectra and v_n
- ✓ HBT radii v.s. k_T and N_{trk}

✓ …

Clear evidence of collectivity observed, similar for both "small" and "large" systems

- ✓ Multi-particle correlation v_n {m}
- \checkmark Mass dependence of spectra and v_n
- ✓ HBT radii v.s. k_T and N_{trk}

 \checkmark

Is it hydrodynamics in small systems?

- Data consistent with "hydro-like" scenario
- Not obvious "small" and "large" fluids behave differently
- Accept or discard QGP fluid paradigm altogether

Clear evidence of collectivity observed, similar for both "small" and "large" systems

- ✓ Multi-particle correlation v_n {m}
- \checkmark Mass dependence of spectra and v_n
- ✓ HBT radii v.s. k_T and N_{trk}

 \checkmark

Is it hydrodynamics in small systems?

- ♦ Data consistent with "hydro-like" scenario
- Not obvious "small" and "large" fluids behave differently
- Accept or discard QGP fluid paradigm altogether

Connection to geometry in small systems?

For $A_1(A_2) \ge 2$, hydro models agree

For $A_1(A_2) \ge 2$, hydro models agree

For $A_1(A_2) \ge 2$, hydro models agree

For $A_1(A_2) \ge 2$, hydro models agree

For $A_1(A_2) \ge 2$, hydro models agree

Shape of a proton relevant for describing v_n in pA

Shape of a proton relevant for describing v_n in pA

What is the image of a proton in yoctoseconds?

Shape of a proton relevant for describing v_n in pA

What is the image of a proton in yoctoseconds?

exciting opportunity, well connected to EIC physics

IS of small system: (I) v_n in pp

PRL 116 (2016) 172302, CMS-PAS-HIN-15-009

 \bigcirc

 \square

 \bigcirc

CMS Preliminary

00000

— pp $\sqrt{s} = 7$ TeV, no sub.

8 ¢ Γ

 $0.3 < p_{_{T}} < 3 \text{ GeV/c}$

300

• pp $\sqrt{s} = 7$ TeV

60

Ð

200

 $N_{trk}^{offline}$

D

 $v_3 > 0$ in pp – the "shape" of a proton must fluctuate

IS of small system: (I) v_n in pp

 $v_3 > 0$ in pp – the "shape" of a proton must fluctuate Strongly constrained by pp + pPb data

Fluctuation-driven ε_n

Yan, Ollitrault, PRL 112, 082301 (2014)

Cumulants **ɛ₂{m}** (m = 2, 4, 6, 8 ...)

Fluctuation-driven ε_n

Yan, Ollitrault, PRL 112, 082301 (2014)

Cumulants $\epsilon_2\{m\} \longrightarrow v_2\{m\}$ (m = 2, 4, 6, 8 ...)

Fluctuation-driven ε_n

Yan, Ollitrault, PRL 112, 082301 (2014)

Cumulants $\epsilon_2\{m\} \longrightarrow v_2\{m\}$ (m = 2, 4, 6, 8 ...)

PRL 115, 012301 (2015)

Fluctuation-driven ε_n

Yan, Ollitrault, PRL 112, 082301 (2014)

Cumulants $\epsilon_2\{m\} \longrightarrow v_2\{m\}$ (m = 2, 4, 6, 8 ...)

PRL 115, 012301 (2015)

Hydrodynamic model is very testable!

Fluc.-driven ε_n determined by # of sources (N_s)

Yan, Ollitrault, PRL 112, 082301 (2014)

$$\frac{\mathbf{v}_{n}\{4\}}{\mathbf{v}_{n}\{2\}} = \frac{\varepsilon_{n}\{4\}}{\varepsilon_{n}\{2\}} = \left(\frac{2}{1+N_{s}/2}\right)^{1/4}$$

Fluc.-driven ε_n determined by # of sources (N_s)

Yan, Ollitrault, PRL 112, 082301 (2014)

$$\frac{\mathbf{v}_{n}\{4\}}{\mathbf{v}_{n}\{2\}} = \frac{\varepsilon_{n}\{4\}}{\varepsilon_{n}\{2\}} = \left(\frac{2}{1+N_{s}/2}\right)^{1/4}$$

Fluc.-driven ε_n determined by # of sources (N_s)

Yan, Ollitrault, PRL 112, 082301 (2014)

$$\frac{\mathbf{v}_{n}\{4\}}{\mathbf{v}_{n}\{2\}} = \frac{\varepsilon_{n}\{4\}}{\varepsilon_{n}\{2\}} = \left(\frac{2}{1+N_{s}/2}\right)^{1/4}$$

CMS-PAS-HIN-15-009

See experimental talks for new results later!

IS of small system: (III) v_n correlations

 $v_2 - v_3$ correlation in AA from initial-state geometry

IS of small system: (III) v_n correlations

Is it there in pp/pA systems?

Flow factorization breaking/PCA

$$V_{n\Delta}(p_T^a, \eta^a; p_T^b, \eta^b) \neq v_n(p_T^a, \eta^a) \times v_n(p_T^b, \eta^b)$$

(two-particle)

(single-particle)

Flow factorization breaking/PCA

$$V_{n\Delta}(p_T^a, \eta^a; p_T^b, \eta^b) \neq v_n(p_T^a, \eta^a) \times v_n(p_T^b, \eta^b)$$

(two-particle)

(single-particle)

- caused by "lumpiness" of the initial state

Flow factorization breaking/PCA

$$V_{n\Delta}(p_T^a, \eta^a; p_T^b, \eta^b) \neq v_n(p_T^a, \eta^a) \times v_n(p_T^b, \eta^b)$$

(two-particle)

(single-particle)

– caused by "lumpiness" of the initial state

PRC 90, 044906 (2014), PRC92, 034911 (2015)

Flow factorization breaking/PCA

$$V_{n\Delta}(p_T^a, \eta^a; p_T^b, \eta^b) \neq v_n(p_T^a, \eta^a) \times v_n(p_T^b, \eta^b)$$

(two-particle)

(single-particle)

– caused by "lumpiness" of the initial state

PRC 90, 044906 (2014), PRC92, 034911 (2015)

Clear evidence of *long-range, collective* phenomena in HM QCD systems

Initial spatial ε_s + final interactions

Initial momentum ε_p from initial interactions

Clear evidence of *long-range, collective* phenomena in HM QCD systems

Initial spatial ϵ_s + final interactions Initial momentum ε_p from initial interactions

In AA, consistent with "hydro-like" – "perfect fluid"

OR

Clear evidence of *long-range, collective* phenomena in HM QCD systems

Initial spatial ε_s + final interactions Initial momentum ε_p from initial interactions

In AA, consistent with "hydro-like" – "perfect fluid"

OR

QCD fluid in pp/pA? Connection to initial geometry is the key ingredient to be established in the future

Clear evidence of *long-range, collective* phenomena in HM QCD systems

Initial spatial ε_s + final interactions Initial momentum ε_p from initial interactions

In AA, consistent with "hydro-like" – "perfect fluid"

OR

QCD fluid in pp/pA? Connection to initial geometry is the key ingredient to be established in the future

Unique opportunity in pp/pA of probing fluctuations of proton substructure – *Test of fundamental QCD* Potential connection to future EIC program!

Jet quenching in small systems (?)

If ridge is flow → strongly interacting
→ presence of jet quenching?

In small system at fixed N_{trk}

$$L \downarrow$$
 but $\hat{\mathbf{q}}$ (~T³)

$$\Delta E \sim \alpha_s(T) \hat{q}(T) L^2$$

Who wins?

$$s \sim T^3$$

 $s \sim \frac{N_{trk}}{\pi L^2}$

Roughly balanced

Jet quenching in small systems (?)

If ridge is flow → strongly interacting
→ presence of jet quenching?

Sizable suppression predicted for $p_T \sim 10-20$ GeV/c

Misconception of IP-glasma model

N. B. fluctuation of each N-N energy depositAA data NOT sensitive to subnucleonic structure"Lumpiness" of proton can be probed by pA (or pp)

Connection to Geometry

NCQ scaling in pPb system!

Flow developed at partonic level!?

Expected or surprising in pPb?

Amazing scaling in AA discovered 10 yrs ago in quest of explanations, esp. in light of pPb data

Ridge in pPb persists up to at least several GeV/c

Sizeable $v_2 \sim 5\%$ (after a large subtraction)

Multiparticle correlations to test collectivity of high p_T particles

