Progress in higher order CGC computations

Initial Stages in High Energy Nuclear Collisions

Lisbon, Portugal
23-27 May 2016

Dionysios Triantafyllopoulos ECT*/FBK, Trento, Italy

Outline

* BK equation at order α^{2} and large transverse logarithms
* Unphysical solutions
* Resummation of logarithms to all orders
- Restoration of stability and solutions
* Fits to HERA data, outlook

CGC and BK in Heavy Ion Collisions

* CGC: high energy evolution of hadronic wave function
* Best d.o.f. : Wilson lines for projectile partons scattering
* Cross section in DIS, single / double particle production at forward rapidity in pA collisions, energy density just after an AA collision, ... :
Local in rapidity observables: correlators of Wilson lines.
* To excellent accuracy, all such correlators expressed in terms of dipole scattering. BK equation.

Diagrams for dipole evolution

* LO

* $\mathrm{NLO} \mathrm{N}_{\mathrm{f}}$

* $\mathrm{NLO} \mathrm{N}_{\mathrm{c}}$

* Right mover. Lower k^{+}longitudinal momentum.

The BK equation at NLO ${ }_{\text {balists, Chirinios }}$

$$
\begin{gathered}
\frac{\mathrm{d} S_{12}}{\mathrm{~d} Y}=\frac{\bar{\alpha}_{s}}{2 \pi} \int \mathrm{~d}^{2} z_{3} \frac{z_{12}^{2}}{z_{13}^{2} z_{23}^{2}}\left[1+\bar{\alpha}_{s}\left(\bar{b} \ln z_{12}^{2} \mu^{2}-\bar{b} \frac{z_{13}^{2}-z_{23}^{2}}{z_{12}^{2}} \ln \frac{z_{13}^{2}}{z_{23}^{2}}+\frac{67}{36}-\frac{\pi^{2}}{12}-\frac{5}{18} \frac{N_{\mathrm{f}}}{N_{\mathrm{c}}}\right.\right. \\
\left.\left.-\frac{1}{2} \ln \frac{z_{13}^{2}}{z_{12}^{2}} \ln \frac{z_{23}^{2}}{z_{12}^{2}}\right)\right]\left(S_{13} S_{32}-S_{12}\right) \\
+\frac{\bar{\alpha}_{s}^{2}}{8 \pi^{2}} \int \frac{\mathrm{~d}^{2} z_{3} \mathrm{~d}^{2} z_{4}}{z_{34}^{4}}\left[-2+\frac{z_{13}^{2} z_{24}^{2}+z_{14}^{2} z_{23}^{2}-4 z_{12}^{2} z_{34}^{2}}{z_{13}^{2} z_{24}^{2}-z_{14}^{2} z_{23}^{2}} \ln \frac{z_{13}^{2} z_{24}^{2}}{z_{14}^{2} z_{23}^{2}}\right. \\
\left.+\frac{z_{12}^{2} z_{34}^{2}}{z_{13}^{2} z_{24}^{2}}\left(1+\frac{z_{12}^{2} z_{34}^{2}}{z_{13}^{2} z_{24}^{2}-z_{14}^{2} z_{23}^{2}}\right) \ln \frac{z_{13}^{2} z_{24}^{2}}{z_{14}^{2} z_{23}^{2}}\right] \\
{\left[S_{13} S_{34} S_{42}-\frac{1}{2 N_{\mathrm{c}}^{3}} \operatorname{tr}\left(V_{1} V_{3}^{\dagger} V_{4} V_{2}^{\dagger} V_{3} V_{4}^{\dagger}\right)-\frac{1}{2 N_{\mathrm{c}}^{3}} \operatorname{tr}\left(V_{1} V_{4}^{\dagger} V_{3} V_{2}^{\dagger} V_{4} V_{3}^{\dagger}\right)-S_{13} S_{32}+\frac{1}{N_{\mathrm{c}}^{2}} S_{12}\right]} \\
+\frac{\bar{\alpha}_{s}^{2}}{8 \pi^{2}} \frac{N_{\mathrm{f}}}{N_{\mathrm{c}}} \int \frac{\mathrm{~d}^{2} z_{3} \mathrm{~d}^{2} z_{4}}{z_{34}^{4}}\left[2-\frac{z_{13}^{2} z_{24}^{2}+z_{14}^{2} z_{23}^{2}-z_{12}^{2} z_{34}^{2}}{z_{13}^{2} z_{24}^{2}-z_{14}^{2} z_{23}^{2}} \ln \frac{z_{13}^{2} z_{24}^{2}}{z_{14}^{2} z_{23}^{2}}\right] \\
{\left[S_{14} S_{32}-\frac{1}{N_{\mathrm{c}}^{3}} \operatorname{tr}\left(V_{1} V_{2}^{\dagger} V_{3} V_{4}^{\dagger}\right)-\frac{1}{N_{\mathrm{c}}^{3}} \operatorname{tr}\left(V_{1} V_{4}^{\dagger} V_{3} V_{2}^{\dagger}\right)+\frac{1}{N_{\mathrm{c}}^{2}} S_{12} S_{34}-S_{13} S_{32}+\frac{1}{N_{\mathrm{c}}^{2}} S_{12}\right]} \\
z_{i j}=z_{i}-z_{j} \quad S_{i j}=\frac{1}{N_{\mathrm{c}}} \operatorname{tr}\left(V_{i}^{\dagger} V_{j}\right) \quad V_{i}^{\dagger}=\mathrm{P} \exp \left[\mathrm{i} g \int \mathrm{~d} z^{+} A_{a}^{-}\left(z^{+}, z_{i}\right) t^{a}\right] \quad \bar{b}=\frac{11}{12}-\frac{1}{6} \frac{N_{\mathrm{f}}}{N_{\mathrm{c}}}
\end{gathered}
$$

$$
\text { See also Kovner, Lublinsky, Mulian } 14
$$

Large transverse logs

*Strongly ordered large "perturbative" dipoles (DLA)

$$
1 / Q_{s} \gg z_{14} \simeq z_{24} \simeq z_{34} \gg z_{13} \simeq z_{23} \gg z_{12}
$$

* Large dipoles interact stronger, real terms only ($\mathrm{N}_{\mathrm{f}}=0$)

$$
\frac{\mathrm{d} T_{12}}{\mathrm{~d} Y}=\bar{\alpha}_{s} \int_{z_{12}^{2}}^{1 / Q_{s}^{2}} \mathrm{~d} z_{13}^{2} \frac{z_{12}^{2}}{z_{13}^{4}}\left(1-\bar{\alpha}_{s} \frac{1}{2} \ln ^{2} \frac{z_{13}^{2}}{z_{12}^{2}}-\bar{\alpha}_{s} \frac{11}{12} \ln \frac{z_{13}^{2}}{z_{12}^{2}}\right) T_{13}
$$

* NLO $>$ LO, unstable expansion in coupling.

Simple but general IC: color transparency + saturation
$T_{12}=\left\{\begin{array}{l}z_{12}^{2} Q_{s 0}^{2}, z_{12} Q_{s 0} \ll 1 \\ 1\end{array}, z_{12} Q_{s 0} \gg 1 \Rightarrow \frac{\Delta T_{12}}{\bar{\alpha}_{s} \Delta Y} \simeq z_{12}^{2} Q_{s 0}^{2}\left(\ln \frac{1}{z_{12}^{2} Q_{s 0}^{2}}-\frac{\bar{\alpha}_{s}}{6} \ln ^{3} \frac{1}{z_{12}^{2} Q_{s 0}^{2}}-\frac{11 \bar{\alpha}_{s}}{24} \ln ^{2} \frac{1}{z_{12}^{2} Q_{s 0}^{2}}\right)\right.$

Unstable numerical solutions

Avsar, Stasto, DT, Zaslavsky 11

Higher order CGC computations

Lappi, Mantysaari 15

D. Triantafyllopoulos, $\mathrm{ECT}^{*} / \mathrm{FBK}$

Two gluons and time ordering (kinematics)

* Hard to soft projectile evolution $\boldsymbol{k} \ll \boldsymbol{p}$ and $k^{+} \ll p^{+}$
* Energy denominators lead to largest logs when emissions are time-ordered $\tau_{k} \approx k^{+} z_{4}^{2} \ll \tau_{p} \approx p^{+} z_{3}^{2}$
* Leads to double log term in NLO BK equation
$\Delta T_{12}=\bar{\alpha}_{s}^{2} \int \frac{\mathrm{~d} p^{+}}{p^{+}} \frac{\mathrm{d} k^{+}}{k^{+}} \Theta\left(p^{+} \frac{z_{3}^{2}}{z_{4}^{2}}-k^{+}\right) \mathrm{d} z_{3}^{2} \mathrm{~d} z_{4}^{2} \frac{z_{12}^{2}}{z_{3}^{2} z_{4}^{4}} T\left(z_{4}\right) \rightarrow-\frac{\bar{\alpha}_{s}^{2} \Delta Y}{2} \int_{z_{12}^{2}}^{1 / Q_{s}^{2}} \frac{\mathrm{~d} z_{2}^{2}}{z_{4}^{4}} \ln ^{2} \frac{z_{4}^{2}}{z_{12}^{2}} T\left(z_{4}\right)$

Resummation of double logs in DLA

* Systematically resum to all orders in non-local equation $\frac{\mathrm{d} T\left(Y, z_{12}^{2}\right)}{\mathrm{d} Y}=\bar{\alpha}_{s} \int_{z_{12}^{2}}^{1 / Q_{s}^{2}} \frac{\frac{2}{2}}{z_{13}^{2}} z_{12}^{2} \frac{z_{12}^{2}}{z_{13}^{2}} \Theta\left(Y-\ln \frac{z_{13}^{2}}{z_{12}^{2}}\right) T\left(Y-\ln \frac{z_{13}^{2}}{z_{12}^{2}}, z_{13}^{2}\right)$
*Mathematically equivalent to local equation
with modified initial condition (impact factor)

$$
T\left(0, z_{12}^{2}\right) \propto \frac{C_{\mathrm{F}}}{N_{\mathrm{c}}} z_{12}^{2} Q_{s 0}^{2} \sqrt{\bar{\alpha}_{s}} \mathrm{~J}_{1}\left(2 \sqrt{\bar{\alpha}_{s} \ln ^{2} \frac{1}{z_{12}^{2} Q_{s 0}^{2}}}\right)
$$

Resummation of double logs in BK

* Promote local equation to include BK physics

$$
\begin{gathered}
\frac{\mathrm{d} S_{12}}{\mathrm{~d} Y}=\frac{\bar{\alpha}_{s}}{2 \pi} \int \mathrm{~d}^{2} z_{3} \frac{z_{12}^{2}}{z_{13}^{2} z_{23}^{2}} \frac{\mathrm{~J}_{1}\left(2 \sqrt{\bar{\alpha}_{s} L_{13} L_{23}}\right)}{\sqrt{\bar{\alpha}_{s} L_{13} L_{23}}}\left(S_{13} S_{32}-S_{12}\right) \\
\text { with } L_{13} L_{23}=\ln \frac{z_{13}^{2}}{z_{12}^{2}} \ln \frac{z_{23}^{2}}{z_{12}^{2}}
\end{gathered}
$$

Equivalent non-local equation by Beuf 14

* NLO BK (double log term) when truncated to order $\bar{\alpha}_{s}^{2}$
* Exactly resums double log terms to all orders

Numerical solution

BFKL on $z_{12}^{2 \gamma} \equiv r^{2 \gamma}$

$\omega_{\mathrm{LO}}=\frac{\bar{\alpha}_{s}}{\gamma}+\frac{\bar{\alpha}_{s}}{1-\gamma}+$ finite $\quad \omega_{\mathrm{NLO}}=\frac{\bar{\alpha}_{s}}{\gamma}+\frac{\bar{\alpha}_{s}}{1-\gamma}-\frac{\bar{\alpha}_{s}^{2}}{(1-\gamma)^{3}}+$ finite
$\omega_{\mathrm{NLO}}^{\mathrm{res}}=\omega_{\mathrm{NLO}}-\frac{\bar{\alpha}_{s}}{1-\gamma}+\frac{\bar{\alpha}_{s}^{2}}{(1-\gamma)^{3}}+\frac{1}{2}\left[-(1-\gamma)+\sqrt{(1-\gamma)^{2}+4 \bar{\alpha}_{s}}\right]+$ finite

Numerical solution

* Considerable speed reduction, roughly factor of $1 / 2$

Single log in quark contribution (dynamics)

* Take $\boldsymbol{k} \ll \boldsymbol{p}$ and $\zeta=k^{+} / p^{+} \ll 1$ hard to soft projectile evolution
* Quark contribution is easier, no DLs
* Integrate transverse momenta

$$
\Sigma \mathcal{A}_{i j}=\frac{\alpha_{s}^{2} N_{\mathrm{f}}}{2 \pi^{4}} \Delta Y \int_{0}^{1} \mathrm{~d} \zeta \frac{z_{12}^{2}}{z_{4}^{2}} \frac{z_{3}^{4}+\zeta^{2} z_{4}^{4}}{\left(z_{3}^{2}+\zeta z_{4}^{2}\right)^{4}} \simeq \frac{\alpha_{s}^{2} N_{\mathrm{f}}}{3 \pi^{4}} \Delta Y \frac{z_{12}^{2}}{z_{3}^{2} z_{4}^{4}}
$$

- $\zeta z_{4}^{2} \sim z_{3}^{3}$, no time ordering. Integrand $P_{q G}$ split. function
* Insert color structure and scattering
$\frac{\Delta T_{12}}{\Delta Y}=-\frac{\bar{\alpha}_{s}^{2} N_{\mathrm{f}}}{6 N_{\mathrm{c}}^{3}} z_{12}^{2} \int_{z_{12}^{2}}^{1 / Q_{s}^{2}} \frac{\mathrm{~d} z_{4}^{2}}{z_{4}^{4}} \ln \frac{z_{4}^{2}}{z_{12}^{2}} T\left(z_{4}\right)$
Higher order CGC computations

Relationship to splitting functions

* DGLAP mixes quarks and gluons. Largest eigenvalue of moments:

$$
\int_{0}^{1} \mathrm{~d} z z^{\omega}\left[P_{G G}(z)+\frac{C_{\mathrm{F}}}{N_{\mathrm{c}}} P_{q G}(z)\right]=\frac{1}{\omega} \underbrace{-\frac{11}{12}-\frac{N_{\mathrm{f}}}{6 N_{\mathrm{c}}^{3}}}_{\equiv A_{1}}+\mathcal{O}(\omega)
$$

* Similar hard to soft gluon diagrams must give -11/12
* All this is DGLAP physics. "Normally" it is soft to hard.

Soft to hard

* Imagine starting from LM target parton with large q_{0}^{-} Evolve up to small projectile by emitting partons with smaller size and smaller minus long. momentum.

DGLAP solution and collinear BK kernel

* General DGLAP solution

$$
T_{12}(Y) \approx z_{12}^{2} Q_{0}^{2} x G\left(\eta, \ln \frac{1}{z_{12}^{2} Q_{0}^{2}}\right) \approx \int \frac{\mathrm{d} \omega}{2 \pi \mathrm{i}} \exp \{\omega Y+[\underbrace{\bar{\alpha}_{s} \mathcal{P}(\omega)-\omega-1}_{-\gamma}] \ln \frac{1}{z_{12}^{2} Q_{0}^{2}}\}
$$

* Solve for ω as function of γ. Keep only up to A_{1}. One, two, three, ... subleading splittings resummed. Exponential combinatorics.
$\frac{\mathrm{d} S_{12}}{\mathrm{~d} Y}=\frac{\bar{\alpha}_{s}}{2 \pi} \int \mathrm{~d}^{2} z_{3} \frac{z_{12}^{2}}{z_{13}^{2} z_{23}^{2}}\left(\frac{z_{12}^{2}}{z_{>}^{2}}\right)^{\mp \bar{\alpha}_{s} A_{1}} \frac{\mathrm{~J}_{1}\left(2 \sqrt{\bar{\alpha}_{s} L_{13} L_{23}}\right)}{\sqrt{\bar{\alpha}_{s} L_{13} L_{23}}}\left(S_{13} S_{32}-S_{12}\right)$
$z_{<}=\min \left\{z_{13}, z_{23}\right\} .+$ sign when $z_{<}<z_{12}$

Running coupling

$$
\frac{\mathrm{d} S_{12}}{\mathrm{~d} Y}=\frac{\bar{\alpha}_{s}(\mu)}{2 \pi} \int \mathrm{~d}^{2} z_{3} \frac{z_{12}^{2}}{z_{13}^{2} z_{23}^{2}}\left[1+\bar{\alpha}_{s}(\mu)\left(\bar{b} \ln z_{12}^{2} \mu^{2}-\bar{b} \frac{z_{13}^{2}-z_{23}^{2}}{z_{12}^{2}} \ln \frac{z_{13}^{2}}{z_{23}^{2}}\right)\right]\left(S_{13} S_{32}-S_{12}\right)
$$

* Choose μ to cancel potentially large log in all regions Large daughter dipoles : $\mu \approx 1 / z_{12}$ Small daughter dipole : $\mu \approx 1 / \min \left\{z_{13}, z_{23}\right\}$ In general : $\mu \approx 1 / \min \left\{z_{i j}\right\} \quad \checkmark$ Hardest scale
* Balitsky-prescription: \checkmark, albeit unphysical slow
* Choose coefficient of \bar{b} to vanish: \checkmark

$$
\alpha_{s}=\left[\frac{1}{\alpha_{s}\left(z_{12}\right)}+\frac{z_{13}^{2}-z_{23}^{2}}{z_{12}^{2}} \frac{\alpha_{s}\left(z_{13}\right)-\alpha_{s}\left(z_{23}\right)}{\alpha_{s}\left(z_{13}\right) \alpha_{s}\left(z_{23}\right)}\right]^{-1}
$$

Couplings comparison

D. Triantafyllopoulos, ECT*/FBK

Numerical solution (fixed)

Numerical solution (prescirption:small)

See also Lappi Mantysaari 16

Fit

$\begin{aligned} & \text { init } \\ & \text { cdt. } \end{aligned}$	$\begin{aligned} & \mathrm{RC} \\ & \text { schm } \end{aligned}$	sing. logs	χ^{2} per data point			parameters					$\begin{aligned} & \text { init } \\ & \text { cdt. } \end{aligned}$	$\begin{aligned} & \mathrm{RC} \\ & \text { schm } \end{aligned}$	sing. $\log \mathrm{s}$	χ^{2} / npts for $Q_{\text {max }}^{2}$			
			$\sigma_{\text {red }}$	$\sigma_{\text {red }}^{\text {ced }}$	F_{L}	$R_{p}[\mathrm{fm}]$	$Q_{0}[\mathrm{GeV}]$	C_{α}	p	$C_{\text {MV }}$				50	100	200	400
GBW	small	yes	1.135	0.552	0.596	0.699	0.428	2.358	2.802	-	GBW	small	yes	1.135	1.172	1.355	1.537
GBW	fac	yes	1.262	0.626	0.602	0.671	0.460	0.479	1.148	-	GBW	fac	yes	1.262	1.360	1.654	1.899
rcMV	small	yes	1.126	0.578	0.592	0.711	0.530	2.714	0.456	0.896	rcMV	small	yes	1.126	1.172	1.167	1.158
rcMV	fac	yes	1.222	0.658	0.595	0.681	0.566	0.517	0.535	1.550	rcMV	fac	yes	1.222	1.299	1.321	1.317
GBW	small	no	1.121	0.597	0.597	0.716	0.414	6.428	4.000	-	GBW	small	no	1.121	1.131	1.317	1.487
GBW	fac	no	1.164	0.609	0.594	0.697	0.429	1.195	4.000	-	GBW	fac	no	1.164	1.203	1.421	1.622
rcMV	small	no	1.097	0.557	0.593	0.723	0.497	7.393	0.477	0.816	rcMV	small	no	1.097	1.128	1.095	1.078
rcMV	fac	no	1.128	0.573	0.591	0.703	0.526	1.386	0.502	1.015	rcMV	fac	no	1.128	1.177	1.150	1.131

* No anomalous dimension in initial condition
* Including single logs: more physical parameters
* MV model: can be extrapolated to higher Q^{2}
* Smallest dipole prescription: best fit B-prescription: not very good

Conclusion - Outlook

* Stable, slow, evolution with resumed dominant logs
* Insert formalism into more exclusive observables e.g. particle production at forward rapidity
- Write a Langevin equation?
* Understand better hard to soft DGLAP evolution?

