Measurement of forward-backward multiplicity correlations in Pb+Pb, p+Pb and pp collisions with the ATLAS detector

Mingliang Zhou

(Stony Brook University) for the ATLAS collaboration ATLAS-CONF-2015-051

Initial Stages Conference, Lisbon

26 May 2016

Initial Stages 2016, Lisbon

Motivation: a historical view

• Rapidity correlations is an old story

• Physics goal: understand production mechanism in early stage.

• More details see Longgang and Jiangyong's talks.

Motivation: a historical view

• Rapidity correlations is an old story

- Physics goal: understand production mechanism in early stage.
 - More details see Longgang and Jiangyong's talks.
- Why we come back to this analysis?
 - Previous methods focused on limited phase space: η and $-\eta$;
 - Short-range correlation and statistical dilution;
 - Few direct comparisons among different systems;

Motivation: a historical view

• Rapidity correlations is an old story

- Physics goal: understand production mechanism in early stage.
 - More details see Longgang and Jiangyong's talks.
- Why we come back to this analysis?
 - Previous methods focused on limited phase space: η and $-\eta$;
 - We used a new observable that covers full η space;
 - Short-range correlation and statistical dilution;
 - We estimated short-range correlation;
 - Few direct comparisons among different systems;
 - We compared from large to small systems.

Pb+Pb, *p*+Pb and *pp* datasets

- Correlation functions calculated using charged particles $p_T > 0.2 \text{ GeV}$;
- High-multiplicity track (HMT) trigger used to increase statistics;

- Analysis carried out in many bins over $10 \le N_{ch}^{rec} < 300$;
- Results presented as a function efficiency-corrected values N_{ch} .

Pb+Pb, *p*+Pb and *pp* datasets

- Correlation functions calculated using charged particles $p_T > 0.2$ GeV;
- High-multiplicity track (HMT) trigger used to increase statistics;

- Analysis carried out in many bins over $10 \le N_{ch}^{rec} < 300$;
- Results presented as a function efficiency-corrected values N_{ch} .
 - How long-range correlation compare among three systems, at the same N_{ch} ?

• Single particle observable

$$R_s(\eta) \equiv \frac{N(\eta)}{\langle N(\eta) \rangle}$$

• Two particles observable (correlation function)

 $C(\eta_1,\eta_2) = \frac{\langle N(\eta_1)N(\eta_2)\rangle}{\langle N(\eta_1)\rangle\langle N(\eta_2)\rangle}$

• Two particles observable (correlation function)

 $C(\eta_1, \eta_2) = \frac{\langle N(\eta_1)N(\eta_2) \rangle}{\langle N(\eta_1) \rangle \langle N(\eta_2) \rangle} = \langle R_s(\eta_1)R_s(\eta_2) \rangle$ Two-particle correlation is related to single-particle distribution.

• Two particles observable (correlation function)

 $C(\eta_1, \eta_2) = \frac{\langle N(\eta_1)N(\eta_2) \rangle}{\langle N(\eta_1) \rangle \langle N(\eta_2) \rangle} = \langle R_s(\eta_1)R_s(\eta_2) \rangle$ Two-particle correlation is related to single-particle distribution.

- Advantage of correlation function
 - Disentangles dynamical fluctuation from statistical fluctuation.
 - Detector effects removed by mixed events;

A. Bzdak and D. Teaney, PRC 87 (2013) 024906

Jia, Jiangyong, Sooraj Radhakrishnan, and MZ. Phys.Rev. C93 (2016) no.4, 044905

 $|\eta_{-}|\equiv |\eta_{1}-\eta_{2}|\approx 0$

Short-range correlation $\delta_{SRC}(\eta_1, \eta_2)$ reflect correlation in the same source: jet fragmentation, resonance decay...

 $|\eta_{-}| \equiv |\eta_{1} - \eta_{2}| \approx 0$

Short-range correlation $\delta_{SRC}(\eta_1, \eta_2)$ reflect correlation in the same source: jet fragmentation, resonance decay...

 $|\eta_{-}| \equiv |\eta_{1} - \eta_{2}| > 1.5$ Long-range correlation $C_{LRC}(\eta_{1}, \eta_{2})$ reflect FB asymmetric number of sources: participants, partons, tubes/strings...

Initial Stages 2016, Lisbon

 $|\eta_{-}| \equiv |\eta_{1} - \eta_{2}| \approx 0$

Short-range correlation $\delta_{SRC}(\eta_1, \eta_2)$ reflect correlation in the same source: jet fragmentation, resonance decay...

- Goal: study the long-range correlation;
- Challenge: hard cut on $|\Delta \eta| < 2$ to suppress SRC will lose information.

 $|\eta_{-}| \equiv |\eta_{1} - \eta_{2}| > 1.5$ Long-range correlation $C_{LRC}(\eta_{1}, \eta_{2})$ reflect FB asymmetric number of sources: participants, partons, tubes/strings...

• Particles from the same source (SRC) have strong charge dependence.

• Particles from the same source (SRC) have strong charge dependence.

- Ratio of opposite to same charges $R(\eta_1, \eta_2)$
 - Very strong Gaussian-like SRC;
 - Very weak LRC: charge-independent;

• Particles from the same source (SRC) have strong charge dependence.

- Ratio of opposite to same charges $R(\eta_1, \eta_2)$
 - Very strong Gaussian-like SRC;
 - Very weak LRC: charge-independent;
- Amplitude of $R(\eta_1, \eta_2)$ along η_+ : $f(\eta_+)$, reflects the strength of SRC in the longitudinal direction;

• Particles from the same source (SRC) have strong charge dependence.

- Very strong Gaussian-like SRC;
- Very weak LRC: charge-independent;
- Amplitude of $R(\eta_1, \eta_2)$ along η_+ : $f(\eta_+)$, reflects the strength of SRC in the longitudinal direction;
- Assumption: strength of SRC along η_+ is same for same charge and opposite charge.

 η_+

 $\eta_1 + \eta_2$

• To estimate SRC, LRC pedestal is estimated first.

• $C(\eta_1, \eta_2)$ from same charge used to estimate LRC pedestal because of small SRC;

- $C(\eta_1, \eta_2)$ from same charge used to estimate LRC pedestal because of small SRC;
- LRC pedestal is fitted with quadratic function;

 Analysis focuses on dynamical fluctuation upon average;

$$R_{s}(\eta) \equiv \frac{N(\eta)}{\langle N(\eta) \rangle} \qquad C(\eta_{1}, \eta_{2}) = \frac{\langle N(\eta_{1})N(\eta_{2}) \rangle}{\langle N(\eta_{1}) \rangle \langle N(\eta_{2}) \rangle}$$

- Analysis focuses on dynamical fluctuation upon average;
- However, average multiplicity changes with centrality;

- Analysis focuses on dynamical fluctuation upon average;
- However, average multiplicity changes with centrality;
- The residual centrality dependence is removed by normalizing $C(\eta_1, \eta_2)$

$$C_N(\eta_1, \eta_2) = \frac{C(\eta_1, \eta_2)}{C_p(\eta_1)C_p(\eta_2)}$$

• The linear shape quantifies the FB multiplicity asymmetry;

- The linear shape quantifies the FB multiplicity asymmetry;
- HIJING shows strong correlation between final multiplicity asymmetry and initial participant asymmetry;

- The linear shape quantifies the FB multiplicity asymmetry;
- HIJING shows strong correlation between final multiplicity asymmetry and initial participant asymmetry;
- As will be shown later, this component dominates the shape fluctuation.

• Expansion of correlation function $C_N(\eta_1, \eta_2)$ $1 + \sum_{n.m=1}^{\infty} \langle \underline{a_n a_m} \rangle \frac{T_n(\eta_1) T_m(\eta_2) + T_n(\eta_2) T_m(\eta_1)}{2}$

Initial Stages 2016, Lisbon

-2

Initial Stages 2016, Lisbon

Results: correlation functions

Initial Stages 2016, Lisbon

Initial Stages 2016, Lisbon

Initial Stages 2016, Lisbon

Initial Stages 2016, Lisbon

Initial Stages 2016, Lisbon

• After SRC subtraction, similar LRC in all three systems!

Initial Stages 2016, Lisbon

• Coefficients depend on charge combinations;

- Coefficients depend on charge combinations;
- Complicated and very hard to interpret: due to SRC!

Initial Stages 2016, Lisbon

• Higher order coefficients consistent with 0: dominated by a_1 ;

- Higher order coefficients consistent with 0: dominated by a_1 ;
- Coefficients independent of charge combinations;

How stable are the results?

- Four largely independent methods are applied to determine $\langle a_1^2 \rangle$;
- Different methods have different sensitivity to the analysis procedures;

How stable are the results?

- Four largely independent methods are applied to determine $\langle a_1^2 \rangle$;
- Different methods have different sensitivity to the analysis procedures;

• Four methods give consistent a_1 : conclusions are insensitive to the procedure.

SRC

- Strength of SRC defined as: $\sqrt{\Delta_{SRC}} \equiv \sqrt{\frac{\int \delta_{SRC}(\eta_1,\eta_2) d\eta_1 d\eta_2}{4Y^2}};$
- Depends on *N_{ch}*: strength of SRC increases towards peripheral;
- Depends on system size: SRC is stronger in small system.

- Strength of LRC is characterized by dominating coefficient $\sqrt{a_1^2}$;
- Depends on N_{ch}: FB multiplicity fluctuation is larger in peripheral;
- Independent of system size: require sources at partonic level!
- Strength of SRC and LRC also follow pow-law function: why?

- In an independent cluster model, each cluster emits same number of pairs;
- Both SRC and LRC scale approximately as the inverse of number of clusters *n*;

$$\sqrt{\Delta_{SRC}} \sim \sqrt{a_1^2} \sim \frac{1}{n^{lpha}}$$

- In an independent cluster model, each cluster emits same number of pairs;
- Both SRC and LRC scale approximately as the inverse of number of clusters n;
- Assuming n and N_{ch} are directly related, then

$$\sqrt{\Delta_{SRC}} \sim \sqrt{a_1^2} \sim \frac{1}{n^{\alpha}} \sim \frac{1}{N_{ch}^{\alpha}}$$

		Pb+Pb	<i>p</i> +Pb	pp
Fit with $\frac{c}{N_{ch}^{\alpha}}$	α for $\sqrt{\Delta_{\rm SRC}}$	0.505 ± 0.011	0.450 ± 0.010	0.365 ± 0.014
	α for $\sqrt{\langle a_1^2 \rangle}$	0.454 ± 0.011	0.433 ± 0.014	0.465 ± 0.018

$$\sqrt{\Delta_{SRC}} \sim \sqrt{a_1^2} \sim \frac{1}{n^{\alpha}} \sim \frac{1}{N_{ch}^{\alpha}}, \alpha \sim 0.5$$

Initial Stages 2016, Lisbon

• Asymmetry observed in *p*+Pb collision: stronger correlation in the proton-going side.

• Assume there are n clusters and each one emits m particles on average;

$$\delta_{SRC} \propto \frac{n\langle m(m-1)\rangle}{(n\langle m\rangle)^2} = \frac{1}{n}$$

• Assume there are n clusters and each one emits m particles on average;

• Assume *n* is proportional to local particle density $dN_{ch}/d\eta$;

$$\delta_{SRC} \propto \frac{n\langle m(m-1)\rangle}{(n\langle m\rangle)^2} = \frac{1}{n} \propto \frac{1}{dN_{ch}/d\eta}$$

• Assume there are *n* clusters and each one emits *m* particles on average;

• Assume *n* is proportional to local particle density $dN_{ch}/d\eta$;

$$\delta_{SRC} \propto \frac{n\langle m(m-1)\rangle}{(n\langle m\rangle)^2} = \frac{1}{n} \propto \frac{1}{dN_{ch}/d\eta}$$
 Inverse to multiplicity distribution

Symmetrized *p*+Pb

• For better comparison with *pp* and Pb+Pb, *p*+Pb is symmetrized;

Compare SRC shape in three systems

- For better comparison with *pp* and Pb+Pb, *p*+Pb is symmetrized;
- In high-multiplicity *pp*, SRC shape is slightly larger than *p*+Pb;

Compare SRC shape in three systems

- For better comparison with pp and Pb+Pb, *p*+Pb is symmetrized;
- In high-multiplicity *pp*, SRC shape is slightly larger than *p*+Pb;
- However in Pb+Pb, SRC shape is more flat.

Compare SRC shape in three systems

• For better comparison with pp and Pb+Pb, *p*+Pb is symmetrized;

- In high-multiplicity *pp*, SRC shape is slightly larger than *p*+Pb;
- However in Pb+Pb, SRC shape is more flat.
- EbyE asymmetry of multiplicity (relative to average multiplicity) in highmultiplicity pp is larger than p+Pb while Pb+Pb collision is more symmetric.

Summary

- Forward-backward multiplicity correlation $C_N(\eta_1, \eta_2)$ is measured in Pb+Pb, *p*+Pb and *pp* collisions at similar event multiplicity.
 - Correlation function consistent of a strong short-range component and a long-range component.
- A data-driven method is used to estimate SRC based on the fact that SRC has strong charge dependence, while LRC does not.
- Legendre expansion as well as other three independent methods shows that shape of LRC is dominated by leading linear fluctuation $1 + \langle a_1^2 \rangle \eta_1 \eta_2$.
- The *N_{ch}*-scaling of LRC and SRC across three systems are studied.
 - SRC depends strongly on collision systems and decrease with N_{ch};
 - LRC decrease with N_{ch} but independent of system size;
 - Both follows power-law of *N*_{ch} with an index close to 0.5: information on the number of sources for particle production?
- EbyE asymmetry of multiplicity (relative to the average) in high-multiplicity *pp* is larger than *p*+Pb, while Pb+Pb collision is more symmetric.

Summary

• Forward-backward multiplicity correlation $C_N(\eta_1, \eta_2)$ is measured in Pb+Pb, *p*+Pb and *pp* collisions at similar event multiplicity.

- LRC decrease with N_{ch} but independent of system size;
- Both follows power-law of N_{ch} with an index close to 0.5: information on the number of sources for particle production?
- EbyE asymmetry of multiplicity (relative to the average) in high-multiplicity *pp* is larger than *p*+Pb, while Pb+Pb collision is more symmetric.

Outlook

- Results show the viscous hydro compared with data (LRC+SRC);
- Initial entropy density (modified Glauber) describe the data quite well;
- Hydro-expansion damps the coefficients.

Outlook

- Results show the viscous hydro compared with data (LRC+SRC);
- Initial entropy density (modified Glauber) describe the data quite well;
- Hydro-expansion damps the coefficients.

• Length of sources fluctuation could also explain the shape observed in data.

- Results show the viscous hydro compared with data (LRC+SRC);
- Initial entropy density (modified Glauber) describe the data quite well;
- Hydro-expansion damps the coefficients.

- Length of sources fluctuation could also explain the shape observed in data.
- With SRC separated from LRC, these results will provide better constrains to various initial models.

ATLAS

- $C(\eta_1, \eta_2)$ is a very comprehensive observable.
- Reconstruct balance function

 $2B(\Delta \eta) \equiv 2C^{+-}(\Delta \eta) - C^{++}(\Delta \eta) - C^{--}(\Delta \eta)$

- $C(\eta_1, \eta_2)$ is a very comprehensive observable.
- Reconstruct balance function

$$2B(\Delta \eta) \equiv 2C^{+-}(\Delta \eta) - C^{++}(\Delta \eta) - C^{--}(\Delta \eta)$$

• Test factorization: high- $p_T a_n^H$ and low- $p_T a_n^L$ $\langle a_n^H a_n^L \rangle$

$$r_n \equiv \frac{1}{\sqrt{\langle a_n^H a_n^H \rangle} \sqrt{\langle a_n^L a_n^L \rangle}}$$

0

• $C(\eta_1, \eta_2)$ is a very comprehensive observable.

Reconstruct balance function

 $2B(\Delta \eta) \equiv 2C^{+-}(\Delta \eta) - C^{++}(\Delta \eta) - C^{--}(\Delta \eta)$

• Test factorization: high- $p_T a_n^H$ and low- $p_T a_n^L$ $r_n \equiv \frac{\langle a_n^H a_n^L \rangle}{\sqrt{\langle a_n^H a_n^H \rangle} \sqrt{\langle a_n^L a_n^L \rangle}}$

2

4

Residual centrality dependence

Spectrum: before and after SRC subtraction

$C_N(\eta_1,\eta_2)$

 η_2

• Expansion of $C_N^{sub}(\eta_1, \eta_2)$

 $C_N^{sub}(\eta_1,\eta_2) = 1 + \langle a_1^2 \rangle \eta_1 \eta_2$

• Use whole (η_1, η_2) space.

$C_N(\eta_1,\eta_2)$ η_1 η_2

- Expansion of $C_N^{sub}(\eta_1, \eta_2)$ $C_N^{sub}(\eta_1, \eta_2) = 1 + \langle a_1^2 \rangle \eta_1 \eta_2$
- Quadratic fit along $C_N^{sub}(\eta_-)$

$$C_N^{sub}(\eta_-) = 1 + \frac{\langle a_1^2 \rangle}{4} (\eta_+^2 - \eta_-^2)$$

• Longest level arm for SRC estimation.

$C_N(\eta_1,\eta_2)$

• Outside the SRC region, not affected by the SRC removal procedure.

- Expansion of $C_N^{sub}(\eta_1, \eta_2)$ $C_N^{sub}(\eta_1, \eta_2) = 1 + \langle a_1^2 \rangle \eta_1 \eta_2$
- Quadratic fit along $C_N^{sub}(\eta_-)$

$$C_N^{sub}(\eta_-) = 1 + \frac{\langle a_1^2 \rangle}{4} (\eta_+^2 - \eta_-^2)$$

• Quadratic fit along $C_N^{sub}(\eta_+)$ $C_N^{sub}(\eta_-) = 1 + \frac{\langle a_1^2 \rangle}{4}(\eta_+^2 - \eta_-^2)$

 η_1

$C_N(\eta_1,\eta_2)$

• Residual centrality dependence cancels out.

- Expansion of $C_N^{sub}(\eta_1, \eta_2)$ $C_N^{sub}(\eta_1, \eta_2) = 1 + \langle a_1^2 \rangle \eta_1 \eta_2$
- Quadratic fit along $C_N^{sub}(\eta_-)$

$$C_N^{sub}(\eta_-) = 1 + \frac{\langle a_1^2 \rangle}{4} (\eta_+^2 - \eta_-^2)$$

• Quadratic fit along $C_N^{sub}(\eta_+)$

$$C_N^{sub}(\eta_-) = 1 + \frac{\langle a_1^2 \rangle}{4} (\eta_+^2 - \eta_-^2)$$

• Linear fit of $r_N^{sub}(\eta, \eta_{ref}) \equiv \frac{C_N^{sub}(-\eta, \eta_{ref})}{C_N^{sub}(\eta, \eta_{ref})}$ $r_N^{sub}(\eta, \eta_{ref}) = 1 - 2\langle a_1^2 \rangle \eta \eta_{ref}$

 $C_N(\eta_1,\eta_2)$

• Expansion of $C_N^{sub}(\eta_1, \eta_2)$

 $C_N^{sub}(\eta_1,\eta_2) = 1 + \langle a_1^2 \rangle \eta_1 \eta_2$

• Quadratic fit along $C_N^{sub}(\eta_-)$

$$C_N^{sub}(\eta_-) = 1 + \frac{\langle a_1^2 \rangle}{4} (\eta_+^2 - \eta_-^2)$$

• Quadratic fit along $C_N^{sub}(\eta_+)$

$$C_N^{sub}(\eta_-) = 1 + \frac{\langle a_1^2 \rangle}{4} (\eta_+^2 - \eta_-^2)$$

• Linear fit of $r_N^{sub}(\eta, \eta_{ref}) \equiv \frac{C_N^{sub}(-\eta, \eta_{ref})}{C_N^{sub}(\eta, \eta_{ref})}$

• Four methods have different responses of the analysis procedures, and are largely independent.

$$r_N^{sub}(\eta,\eta_{ref}) = 1 - 2\langle a_1^2 \rangle \eta \eta_{ref}$$

Projection of $C_N(\eta_1, \eta_2)$: position 1

Projection of $C_N(\eta_1, \eta_2)$: position 2

Initial Stages 2016, Lisbon

Projection of $C_N(\eta_1, \eta_2)$ **: position 3**

Initial Stages 2016, Lisbon

Gaussian width of fitting $R(\eta_1, \eta_2)$

Gaussian width as a function of N_{ch}

Detector acceptance from SRC

Detector acceptance from SRC

Detector acceptance from SRC

• In general, the raw CF $C(\eta_1, \eta_2)$ could be decomposed as $C = C_{LRC} + C_{SRC} + C_{SPM}$

where C_{SPM} is the contribution from single particle mode, and it could be removed through normalizing C_{RAW} by the projections of itself C_{RAW}^{proj} , where $C_{IPC}^{proj} = C_{IPC}^{proj} + C_{SPC}^{proj} + C_{SPM}^{proj}$

• Notice here $C_{LRC}^{proj} = 1$ because $\langle a_m a_n \rangle_{m,n\neq 0}^{proj} = 0$, and because C_{SPM} is supposed to be factorized in the (η_1, η_2) plane, so $C_{SPM} = C_{SPM}^{proj}$. Then we have $C_N \equiv C/C^{proj} \approx C_{LRC} + C_{SRC} - C_{SRC}^{proj}$

where C_{SRC}^{proj} didn't vanish due to the acceptance effects;

• Because of the presence of C_{SRC}^{proj} , the estimated SRC C_{SRC}^{est} will be biased $C_{SRC}^{est} = C_{SRC} + C_{SRC}^{bias}$

where C_{SRC}^{bias} denotes the bias;

• However, if we calculate the projections of C_{SRC}^{est} $[C_{SRC}^{est}]^{proj} = C_{SRC}^{proj} + [C_{SRC}^{bias}]^{proj} \approx C_{SRC}^{proj}$

where $\left[C_{SRC}^{bias}\right]^{proj}$ is negligible as long as the $C_{SRC}^{bias} \ll C_{SRC}$ (it is true in this analysis, if not, more iteration required until this relation holds);

• Finally, the contamination term $-C_{SRC}^{proj}$ could be subtracted from C_N $C'_N \equiv C_N + [C_{SRC}^{est}]^{proj} = C_{LRC} + C_{SRC}$

Scan of projections: Pb+Pb

Scan of projections: *p*+Pb

Scan of projections: pp

Charge dependence

Collision system	Pb+Pb	<i>p</i> +Pb	pp
Event-mixing [%]	0.4–0.7	0.4–2.2	0.2–1.4
Run-by-run stability [%]	0.3–0.5	0.3–1.5	0.2–1.5
<i>z</i> _{vtx} variation [%]	0.3–0.6	0.3–1.5	0.2–1.6
Track selection & efficiency [%]	0.6–1.2	0.2–1.3	0.3–0.7
MC consistency [%]	0.2–1.6	0.5 - 2.5	0.7–3.3
Charge dependence [%]	1.0–1.8	0.8–3.8	1.5–2.5
SRC subtraction [%]	1.1–2.1	1.0–5.9	1.2–5.0
Total [%]	1.7–3.2	2.1–7.6	2.5-6.9

Systematic uncertainty: a_1

	Quadratic fit to the $C_{\rm N}^{\rm sub}(\eta_{-}) _{ \eta_{+} <0.1}$			Quadratic fit to the $C_{\rm N}^{\rm sub}(\eta_+) _{0.9 < \eta < 1.1}$		
Collision system	Pb+Pb	<i>p</i> +Pb	pp	Pb+Pb	p+Pb	pp
Event-mixing [%]	0.5–2.2	0.3–1.8	0.2–2.8	0.2–1.7	0.2–1.6	0.2–2.7
Run-by-run stability [%]	0.2–1.3	0.2 - 1.7	0.2 - 2.8	0.2–1.5	0.2–1.1	0.2–1.6
<i>z</i> _{vtx} variation [%]	0.3–1.9	0.1 - 2.2	0.1–1.6	0.1–1.8	0.2–0.7	0.1–0.9
Track selec.& efficiency[%]	0.4–2.1	0.3–0.9	0.8 - 2.2	0.8–3.7	1.0	0.9–1.2
MC consistency [%]	0.2–3.6	0.4–3.9	0.2 - 10.0	0.2–4.3	0.2 - 2.4	0.2–4.7
Charge dependence [%]	0.9–4.2	1.0-10.2	2.8-4.6	0.4–3.8	0.6–3.1	1.2–6.2
SRC subtraction [%]	0.9–2.5	1.2-6.3	1.3-4.8	1.4–2.5	1.2–3.7	1.2-4.6
Total [%]	2.1–5.2	2.7 - 10.3	10–12	2.4–5.5	2.5-6.8	3.5-11.2
	Linear fi	it to the $r_{\rm N}^{\rm sub}$ ($ \eta) _{2.2 < \eta_{ m ref} < 2.4}$	Global	Legendre ex	xpansion of $C_{\rm N}^{\rm sub}$
Collision system	Linear fi Pb+Pb	it to the $r_{\rm N}^{\rm sub}$ ($p+{\rm Pb}$	$\eta) _{2.2< \eta_{ m ref} <2.4}\pp$	Global Pb+Pb	Legendre ez <i>p</i> +Pb	xpansion of $C_{\rm N}^{\rm sub}$ pp
Collision system Event-mixing [%]	Linear fi Pb+Pb 0.3–2.3	t to the $r_{\rm N}^{\rm sub}$ ($p+{\rm Pb}$ 0.3-1.4	$\eta) _{2.2 < \eta_{ m ref} < 2.4} \ pp \ 0.1 - 1.5$	Global Pb+Pb 0.2–1.8	Legendre ex <i>p</i> +Pb 0.1–1.7	xpansion of $C_{\rm N}^{\rm sub}$ pp 0.1-0.9
Collision system Event-mixing [%] Run-by-run stability [%]	Linear fr Pb+Pb 0.3–2.3 0.1–1.2	$\frac{\text{it to the } r_{\text{N}}^{\text{sub}}(}{p+\text{Pb}}$ $0.3-1.4$ $0.1-1.7$	$\eta) _{2.2 < \eta_{ m ref} < 2.4} \ pp \ 0.1 - 1.5 \ 0.2 - 2.8$	Global Pb+Pb 0.2–1.8 0.2–0.7	Legendre ex p+Pb 0.1-1.7 0.1-1.3	$\begin{array}{c} \text{xpansion of } C_{\text{N}}^{\text{sub}} \\ \hline pp \\ 0.1-0.9 \\ 0.1-2.1 \end{array}$
Collision system Event-mixing [%] Run-by-run stability [%] z_{vtx} variation [%]	Linear fr Pb+Pb 0.3–2.3 0.1–1.2 0.2–1.2	$ \frac{1}{100} $ it to the $r_{\rm N}^{\rm sub}$ ($p+{\rm Pb}$ $0.3-1.4$ $0.1-1.7$ $0.2-2.1$	$\frac{\eta) _{2.2 < \eta_{ref} < 2.4}}{pp}$ 0.1–1.5 0.2–2.8 0.2–2.6	Global Pb+Pb 0.2–1.8 0.2–0.7 0.1–1.3	Legendre ez p+Pb 0.1-1.7 0.1-1.3 0.2-2.5	xpansion of $C_{\rm N}^{\rm sub}$ pp 0.1–0.9 0.1–2.1 0.2–1.7
Collision system Event-mixing [%] Run-by-run stability [%] z_{vtx} variation [%] Track selec.& efficiency[%]	Linear fr Pb+Pb 0.3–2.3 0.1–1.2 0.2–1.2 0.4–1.3	$ \frac{1}{100} $ it to the $r_{\rm N}^{\rm sub}$ ($ \frac{p+{\rm Pb}}{0.3-1.4} $ $ 0.1-1.7 $ $ 0.2-2.1 $ $ 0.6-0.9 $	$\frac{\eta) _{2.2 < \eta_{ref} < 2.4}}{pp}$ 0.1–1.5 0.2–2.8 0.2–2.6 0.7–1.7	Global Pb+Pb 0.2–1.8 0.2–0.7 0.1–1.3 0.3–0.9	Legendre ex p+Pb 0.1–1.7 0.1–1.3 0.2–2.5 0.4–0.7	$\begin{array}{c} \text{xpansion of } C_{\text{N}}^{\text{sub}} \\ \hline pp \\ 0.1-0.9 \\ 0.1-2.1 \\ 0.2-1.7 \\ 0.8-2.4 \end{array}$
Collision system Event-mixing [%] Run-by-run stability [%] z_{vtx} variation [%] Track selec.& efficiency[%] MC consistency [%]	Linear fr Pb+Pb 0.3–2.3 0.1–1.2 0.2–1.2 0.4–1.3 0.2–2.6	$ \frac{1}{100} $ it to the $r_{\rm N}^{\rm sub}$ ($ \frac{p+{\rm Pb}}{0.3-1.4} $ $ 0.1-1.7 $ $ 0.2-2.1 $ $ 0.6-0.9 $ $ 0.2-3.7 $	$\frac{\eta) _{2.2 < \eta_{ref} < 2.4}}{pp}$ 0.1–1.5 0.2–2.8 0.2–2.6 0.7–1.7 0.8–7.6	Global Pb+Pb 0.2–1.8 0.2–0.7 0.1–1.3 0.3–0.9 0.2–2.5	Legendre ex p+Pb 0.1–1.7 0.1–1.3 0.2–2.5 0.4–0.7 0.4–3.2	$\begin{array}{c} pp\\ pp\\ 0.1-0.9\\ 0.1-2.1\\ 0.2-1.7\\ 0.8-2.4\\ 0.1-6.7\end{array}$
Collision system Event-mixing [%] Run-by-run stability [%] z_{vtx} variation [%] Track selec.& efficiency[%] MC consistency [%] Charge dependence [%]	Linear fr Pb+Pb 0.3–2.3 0.1–1.2 0.2–1.2 0.4–1.3 0.2–2.6 0.4–4.9	$\frac{p + Pb}{0.3 - 1.4}$ 0.1-1.7 0.2-2.1 0.6-0.9 0.2-3.7 0.1-8.8	$\frac{\eta) _{2.2 < \eta_{ref} < 2.4}}{pp}$ 0.1–1.5 0.2–2.8 0.2–2.6 0.7–1.7 0.8–7.6 1.6–5.3	Global Pb+Pb 0.2–1.8 0.2–0.7 0.1–1.3 0.3–0.9 0.2–2.5 2.3–5.3	Legendre ex p+Pb 0.1-1.7 0.1-1.3 0.2-2.5 0.4-0.7 0.4-3.2 1.0-12.7	$\begin{array}{c} pp\\ \hline pp\\ 0.1-0.9\\ 0.1-2.1\\ 0.2-1.7\\ 0.8-2.4\\ 0.1-6.7\\ 3.4-8.1 \end{array}$
Collision system Event-mixing [%] Run-by-run stability [%] z_{vtx} variation [%] Track selec.& efficiency[%] MC consistency [%] Charge dependence [%] SRC subtraction [%]	Linear fr Pb+Pb 0.3–2.3 0.1–1.2 0.2–1.2 0.4–1.3 0.2–2.6 0.4–4.9 1.4–3.2	$\frac{p+Pb}{0.3-1.4}$ 0.1-1.7 0.2-2.1 0.6-0.9 0.2-3.7 0.1-8.8 2.2-3.4	$\frac{\eta) _{2.2 < \eta_{ref} < 2.4}}{pp}$ 0.1–1.5 0.2–2.8 0.2–2.6 0.7–1.7 0.8–7.6 1.6–5.3 1.7–5.0	Global Pb+Pb 0.2–1.8 0.2–0.7 0.1–1.3 0.3–0.9 0.2–2.5 2.3–5.3 1.7–4.3	Legendre ex p+Pb 0.1–1.7 0.1–1.3 0.2–2.5 0.4–0.7 0.4–3.2 1.0–12.7 2.0–8.9	$\begin{array}{c} pp\\ 0.1-0.9\\ 0.1-2.1\\ 0.2-1.7\\ 0.8-2.4\\ 0.1-6.7\\ 3.4-8.1\\ 2.7-9.6\end{array}$
Collision system Event-mixing [%] Run-by-run stability [%] z_{vtx} variation [%] Track selec.& efficiency[%] MC consistency [%] Charge dependence [%] SRC subtraction [%]	Linear fr Pb+Pb 0.3–2.3 0.1–1.2 0.2–1.2 0.4–1.3 0.2–2.6 0.4–4.9 1.4–3.2	$\frac{p+Pb}{0.3-1.4}$ $0.1-1.7$ $0.2-2.1$ $0.6-0.9$ $0.2-3.7$ $0.1-8.8$ $2.2-3.4$	$\frac{\eta) _{2.2 < \eta_{ref} < 2.4}}{pp}$ 0.1–1.5 0.2–2.8 0.2–2.6 0.7–1.7 0.8–7.6 1.6–5.3 1.7–5.0	Global Pb+Pb 0.2–1.8 0.2–0.7 0.1–1.3 0.3–0.9 0.2–2.5 2.3–5.3 1.7–4.3	Legendre ez p+Pb 0.1-1.7 0.1-1.3 0.2-2.5 0.4-0.7 0.4-3.2 1.0-12.7 2.0-8.9	$\begin{array}{c} pp\\ 0.1-0.9\\ 0.1-2.1\\ 0.2-1.7\\ 0.8-2.4\\ 0.1-6.7\\ 3.4-8.1\\ 2.7-9.6\end{array}$

