EKRT-model predictions for 5.02 TeV Pb+Pb collisions at the LHC

Risto Paatelainen
University of Santiago de Compostela

IS2016 Lisbon, May 25
In collaboration with
H. Niemi (J.W. Goethe University) K. J. Eskola (University of Jyvaskyla)
K. Tuominen (University of Helsinki)

Results from:
Outline

- Compute EbyE fluctuating EKRT initial state for hydro evolution in A+A collisions from saturated NLO pQCD minijet production

- Describe space-time evolution of QCD-matter with 2+1D viscous hydrodynamics, Event-by-Event

- Compare with LHC & RHIC data for bulk (low p_T) observables, to
 - Test the initial state calculation & its predictive power
 - Determine QCD matter $\eta/s(T)$

- New: EKRT predictions for LHC run II 5.02 TeV Pb+Pb collisions
Initial state calculation: step I

Compute the initial minijet ($p_T = \text{a few GeV}$) E_T production in A+A and Δy

\[
\frac{dE_T(p_0, \sqrt{s}, \Delta y, s, b)}{d^2s} = T_A(s + b/2)T_A(s - b/2)\sigma\langle E_T \rangle_{p_0, \Delta y}
\]

- $T_A T_A$ accounts for the nuclear collision geometry (WS density)

- $s = \text{transverse position } (x, y), \quad b = \text{impact parameter}$
- $\sigma\langle E_T \rangle = E_T$-weighted minijet cross section
Computation of $\sigma\langle E_T \rangle$ in NLO

$$\sigma\langle E_T \rangle_{p_0, \Delta y} = \int \frac{d\sigma^{2\to 2}}{d[PS]_2} S_2 + \int \frac{d\sigma^{2\to 3}}{d[PS]_3} S_3$$

Partonic cross sections $\frac{d\sigma^{2\to n}}{d[PS]_n}$ at NLO

- Collinear factorization in A+A
- pQCD in $2 \to 2$ and $2 \to 3$ scatterings

$$\frac{d\sigma^{2\to n}}{d[PS]_n} \sim \sum_{g,q,\bar{q}} f_{i/A}(x_1, Q^2, s_1) \otimes f_{j/A}(x_2, Q^2, s_2) \otimes |M|^2(2 \to n)$$
PDFs for each parton flavor $i \ (= g, q, \bar{q})$

$$f_{i/A}(x, Q^2, s) \equiv r_i^A(x, Q^2, s) \otimes f_i^p(x, Q^2)$$

- f_i^p: CTEQ6M NLO parton densities
- R_i^A: EPS09s (s dependent) NLO nuclear modifications
 Helenius, Eskola et al. JHEP 1207 (2012) 073

- s dependence of the nPDFs is quite weak near the centres of A
Measurement functions S_2 and S_3 for computing minijet E_T in NLO

- Analogous to jet production;

$$S_n = \left[\sum_{i=1}^{n} p_{T,i} \Theta(y_i \in \Delta y) \right] \times \Theta \left(\sum_{i=1}^{n} p_{T,i} \geq 2p_0 \right) \times \Theta \left(E_{T,n} \geq \beta \times p_0 \right)$$

- IR/CL safeness: $S_3 \rightarrow S_2$ at IR & CL limits

- Any β in $[0, 1]$ is OK but a free parameter [RP et al., PRC87 (2013) 4, 044904]

These S_n + nPDFs: Well defined NLO computation of minijet E_T!
Initial state calculation: step II

Conjecture: minijet E_T production saturates when

\[
\frac{dE_T}{d^2sdy}(2 \rightarrow 2) \sim \frac{dE_T}{d^2sdy}(3 \rightarrow 2) \sim \text{H.O.}
\]

- Using scaling law arguments (LO α_s):

\[
(T_{AgA})^2 \frac{\alpha_s^2}{p_0} \sim (T_{AgA})^3 \left(\frac{\alpha_s}{p_0} \right)^3 \Rightarrow T_{AgA} \sim \frac{p_0^2}{\alpha_s} \Rightarrow \frac{dE_T}{d^2sdy} \sim p_0^3
\]

- We obtain a saturation criterion for E_T (IR/CL safe):

\[
\frac{dE_T}{d^2s}(p_0, \sqrt{s}, \ldots, \beta) = \left(\frac{K_{sat}}{\pi} \right) p_0^3 \Delta y
\]

= NLO pQCD part

- and the saturation scale $p_0 = p_{\text{sat}}(\sqrt{s_{NN}}, A, b, s; \beta, K_{\text{sat}})$
Solve the saturation equation for $p_{\text{sat}}(b, s)$ at different b

\[p_{\text{sat}}(b, s) \propto [T_A(s + b/2)T_A(s - b/2)]^n \]

- Observation: p_{sat} scales with $T_A T_A$

\[C(a + T_A T_A)^n - b C a^n \]

- $p_{\text{sat}}(b, s)$ can be parameterized! [RP et al. PLB 731 (2014) 126]
Initial state calculation: step III

Include the EbyE fluctuations arising from the fluctuating nucleon configurations

- Nucleon position in A: sample WS distribution
- Around each nucleon, set a gluon transverse density

\[
T_n(s) = \frac{1}{2\pi\sigma^2} e^{-\frac{s^2}{2\sigma^2}}, \quad \sigma = 0.43 \text{ fm from HERA } \gamma^* p \rightarrow J/\Psi + p \text{ data}
\]

In each event the nuclear thickness function \(T_A(s) = \sum_i^A T_n(|s - s_i|) \)

- Collisions of gluon clouds

Key point: fluctuations for \(p_{\text{sat}} = p_{\text{sat}}(T_A T_A) \)
Transverse profile of initial energy density \(\epsilon(s, \tau_{\text{sat}}) \) at time \(\tau_{\text{sat}}(s) = 1/p_{\text{sat}}(s) \)

\[
\epsilon(s, \tau_{\text{sat}}) = \frac{dE_T(p_{\text{sat}}, \ldots, \beta)}{d^2s} \frac{1}{\tau_{\text{sat}}(s) \Delta y} = \frac{K_{\text{sat}}}{\pi} p_{\text{sat}}(s)^4
\]

Here \(p_{\text{sat}}^{\text{min}} = 1 \text{ GeV} \gg \Lambda_{\text{QCD}} \)

Below \(p_{\text{sat}}^{\text{min}} \) smoothly connect the computed \(\epsilon \)-profile to \(\epsilon \propto \rho_{\text{bin}} \)

"Pre-thermal" evolution from \(\tau_{\text{sat}}(s) \) to \(\tau_0 = 1/p_{\text{sat}}^{\text{min}} = 0.2 \text{ fm} \)

\[
\epsilon(s, \tau_0) = \epsilon(s, \tau_{\text{sat}}) \left(\frac{\tau_{\text{sat}}}{\tau_0} \right)^{4/3}
\]

done with 1D Bjorken hydro at each \(s \)
Viscous Hydrodynamics [Niemi et al]

Run 2+1 D (2nd order) dissipative hydro, Event-by-Event

\[\partial_\mu T^{\mu\nu} = 0, \quad T^{\mu\nu} = \varepsilon u^{\mu} u^{\nu} + (P + \Pi)(g^{\mu\nu} - u^{\mu} u^{\nu}) + \pi^{\mu\nu} \]

- Neglect the bulk pressure \(\Pi = 0 \): \(\Pi \propto \zeta = \text{bulk viscosity} \)
- Keep the shear stress \(\pi^{\mu\nu} \): \(\pi^{\mu\nu} \propto \eta = \text{shear viscosity} \)

Evolution equation for \(\pi^{\mu\nu} \) from kinetic theory [Denicol, et al., PRD85 (2012) 114047]

\[\tau_\pi \dot{\pi}^{(\mu\nu)} + \pi^{\mu\nu} = 2\eta \sigma^{\mu\nu} + \cdots \]

QCD EoS: Based on lattice parametrization [Huovinen,Petreczky,NPA837 (2010) 26]

- s95p-PCE175-v1 chemical freeze-out at \(T_{\text{chem}} = 175 \text{ MeV} \)
- kinetic freeze-out \(T_f = 100 \text{ MeV} \)

Initial \(\pi^{\mu\nu}(s, \tau_0) \) and transverse flow \(\mathbf{v}_T(s, \tau_0) \) set to zero
We study the temperature dependence of shear viscosity η/s

Map the possible temperature dependence of $\eta/s(T)$ with these parametrizations, reproducing the measured v_2 at LHC

Comparison with LHC and RHIC data

Centrality dependence of N_{ch} at mid-rapidity

- Only one (0-5%) LHC point (K_{sat}, β) is fitted, the rest is prediction.

Our computed initial transverse densities are under control

Centrality dependence of 2,3-particle cumulant flow coefficients v_n

- LHC v_n well reproduced by all these $\eta/s(T)$
- Simultaneous LHC & RHIC analysis very important!
- Constraints for $\eta/s(T)$: small η/s in the HRG (0.2 & param1) seems favored

Correlations of 2 Event-plane angles OK, for centralities $< 40 - 50\%$

Again small η/s in the HRG (0.2 & param1) seems favored!

EKRT predictions for 5.02 TeV LHC Pb+Pb

- Centrality & cms-energy dependence of N_{ch}

Data: ALICE collaboration, arXiv:1512.06104
EKRT predictions for 5.02 TeV LHC Pb+Pb

Centrality & cms-energy dependence of N_{ch}

Data: ALICE collaboration, arXiv:1512.06104
Ratio of the flow coefficients $v_n\{2\}$ at 5.02 TeV and 2.76 TeV

- Higher harmonics $n > 2$ more sensitivity to $\eta/s(T)$
- Constraints for $\eta/s(T)$

Ratio of the flow coefficients $v_n\{2\}$ at 5.02 TeV and 2.76 TeV

Higher harmonics $n > 2$ more sensitivity to $\eta/s(T)$

Constraints for $\eta/s(T)$

Correlations of two EP angles for charged hadrons in 5.02 TeV Pb+Pb

- Small changes in the magnitude of 2 EP correlations from 2.76 TeV to 5.02 TeV

Conclusions & Outlook

The EbyE NLO EKRT framework

- Successfully explains the LHC and RHIC bulk observables in A+A collisions
- Has clear predictive power in cms energy, centrality, A
- Is a promising tool for getting a controlled estimate of the QCD matter shear viscosity

Our "best" estimate currently for $\eta/s(T)$

But this is not yet a true error band, statistical global analysis needed (talk by S. Moreland)

Next ...

- Study also bulk viscosity effects
- Improve the pre-thermal evolution (combine EKRT & EKT [A. Kurkela])
Also centrality dependence of the average p_T for pions, kaons and protons looks OK

Our QCD matter EoS is under (sufficient) control but essentially no constraints for $\eta/s(T)$ from here, either

Relative EbyE fluctuations of elliptic flow at LHC come out beautifully

- To reproduce these measurements, need EbyE hydro: initial ε_2 correlates nonlinearly with final state v_2
- No sensitivity to $\eta/s(T)$
- Constraints to the initial state
- Our initial states are in control!!

Correlations of 2 Event-plane angles OK, for centralities $< 40 - 50\%$

- Since $P(\delta v_n)$ constrain our ISs independently of η/s, these correlations give further constraints for $\eta/s(T)$ and simultaneously test the validity of the EbyE viscous framework!

Even the correlations of 3(!) Event-plane angles similarly OK

\[\langle \cos(2\Psi_2 + 3\Psi_3 - 5\Psi_5) \rangle_{SP} \]

\[\langle \cos(2\Psi_2 + 3\Psi_3 - 5\Psi_5) \rangle_{SP} \]

\[\langle \cos(2\Psi_2 - 3\Psi_3 + 4\Psi_4) \rangle_{SP} \]

\[\langle \cos(2\Psi_2 - 3\Psi_3 + 4\Psi_4) \rangle_{SP} \]

\[\langle \cos(-10\Psi_2 + 6\Psi_3 + 4\Psi_4) \rangle_{SP} \]

\[\langle \cos(-10\Psi_2 + 6\Psi_3 + 4\Psi_4) \rangle_{SP} \]

LHC 2.76 TeV Pb+Pb

\[p_T = [0.5...5.0] \text{ GeV} \]

\[p_T = [0.5...5.0] \text{ GeV} \]

\[\eta/s = 0.20 \]

\[\eta/s = \text{param1} \]

\[\eta/s = \text{param2} \]

\[\eta/s = \text{param3} \]

\[\eta/s = \text{param4} \]

ATLAS

\[\nu_n = \left\langle \cos(n(\phi - \Psi_n)) \right\rangle / \left\langle 1 \right\rangle, \]

where

\[\left\langle \cdots \right\rangle = \int d\rho_T^2 d\phi \frac{dN}{dy d\phi dp_T^2} (\cdots) \]

\[\epsilon_{n,2} = \left\langle \epsilon(s)r^2 \cos(n(\phi - \Psi_n)) \right\rangle / \left\langle \epsilon(s)r^2 \right\rangle \]

where

\[\left\langle \cdots \right\rangle = \int dx dy (\cdots) \]

For us \(\epsilon_{2,2} = \epsilon_2 \) and energy density \(\epsilon(s) \) from minijet initial conditions.

\[\left\langle \cos(k_1 \Psi_1 + \cdots + nk_n \Psi_n) \right\rangle_{SP} \equiv \]

\[
\frac{\left\langle \nu_1^{k_1} \cdots \nu_n^{k_n} \cos(k_1 \Psi_1 + \cdots + nk_n \Psi_n) \right\rangle_{ev}}{\sqrt{\left\langle \nu_1^{2k_1} \right\rangle_{ev} \cdots \left\langle \nu_n^{2k_n} \right\rangle_{ev}}} \]