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Introduction

At low xBj , many DIS observables can be expressed within dipole
factorization, including gluon saturation → rich phenomenology.

In particular: Dipole amplitude obtained from fits of HERA data for DIS
structure functions in the dipole factorization at LO+LL with rcBK
Albacete et al., PRD80 (2009); EPJC71 (2011)
Kuokkanen et al., NPA875 (2012);

Lappi, Mäntysaari, PRD88 (2013)

⇒ The fitted dipole amplitude can then be used for pp, pA, AA, as well
as other DIS observables.

In the last 10 years, many theoretical (including numerical) progresses
towards NLO/NLL accuracy for gluon saturation/CGC.

Obviously, DIS structure functions at NLO in the dipole factorization are
required to push the fits beyond LO+LL accuracy.
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DIS at NLO: general structure in dipole factorization

⊗ ⊗

k+0 , x0

k+1 , x1

q+, Q2

⊗ ⊗

k+0 , x0

k+2 , x2

k+1 , x1

q+, Q2

σT ,L(Q2, xBj) =
∑

qq̄ states

∣∣∣Ψ̃γ∗T,L
qq̄

∣∣∣2 [1− 〈S01〉0
]

+
∑

qq̄g states

∣∣∣Ψ̃γ∗T,L
qq̄g

∣∣∣2 [1− 〈S012〉0
]

+ O(αem α
2
s )

With:

Ψ̃
γ∗T,L
qq̄(g): LFWF for a qq̄(g) Fock state (in mixed space) inside an

incoming γ∗ (in momentum space)〈
S01(2)

〉
0
: dipole and tripole operators in the quasi-classical

approximation
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DIS at NLO: existing results

2 independent calculations have been performed for NLO corrections to
photon impact factor and/or DIS cross-section:

1 Balitsky, Chirilli, PRD83 (2011); PRD87 (2013)
Using covariant perturbation theory. Results provided as

Current correlator in position space
Impact factor for k⊥ factorization → Good for BFKL phenomenology

2 G.B., PRD85 (2012)
Using light-front perturbation theory. Results provided as

DIS structure functions in dipole factorization
→ Good for gluon saturation phenomenology

However, in both papers only the qq̄g contribution was calculated
explicitly, whereas NLO corrections to the qq̄ contribution were guessed.
Methods used for that:

1 In Balitsky, Chirilli, PRD83 (2011):
Matching with older vacuum results. (But not very clear to me.)

2 In G.B., PRD85 (2012):
Unitary argument. But I realized later that it does not work...
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Unitarity sum rule

Fock state decomposition of the physical state of an incoming γ:

|γphys〉 =
√
Zγ

[
a†γ |0〉+

∑
l l̄ states

Ψγ

l l̄
b†l d

†
l̄
|0〉+

∑
qq̄ states

Ψγ
qq̄ b†q d

†
q̄ |0〉

+
∑

qq̄g states

Ψγ
qq̄g b†q d

†
q̄ a†g |0〉+ · · ·

]

Normalization of both the physical state and the Fock states implies:

1−Zγ
Zγ

=
∑

l l̄ states

∣∣∣Ψγ

l l̄

∣∣∣2 +
∑

qq̄ states

∣∣Ψγ
qq̄

∣∣2 +
∑

qq̄g states

∣∣Ψγ
qq̄g

∣∣2 + O(αem α
2
s )

Perturbative expansion ⇒ at each order, one gets a new relation .
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Unitarity sum rule

In particular, terms of order αem αs :

(
1−Zγ

)
αem αs

=

( ∑
qq̄ states

∣∣Ψγ
qq̄

∣∣2)
αem αs

+

( ∑
qq̄g states

∣∣Ψγ
qq̄g

∣∣2)
αem αs

In the previous study ( G.B., PRD85 (2012)):

I assumed that
(

1−Zγ
)

received no αem αs contribution, in order to get(∑
qq̄ states

∣∣Ψγ
qq̄

∣∣2)
αem αs

from
(∑

qq̄g states

∣∣Ψγ
qq̄g

∣∣2)
αem αs

However, there is a non-trivial (and finite) contribution to
(

1−Zγ
)

at

order αem αs .

⇒ In this approach, not possible to get the
∣∣Ψγ

qq̄

∣∣2 at NLO from unitarity!

⇒ One-loop correction to Ψγ
qq̄ has to be calculated independently
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One-loop correction to the γT,L → qq̄ LF wave-functions

Calculation of the γT ,L → qq̄ LF wave-functions at NLO

Calculation done in Light-front perturbation theory for QCD+QED

Cut-off k+
min introduced to regulate the small k+ (soft) divergences

No collinear divergence can show up in this calculation (Q2 > 0)

UV divergences from various tensor integrals, but no UV
renormalization at this order.
⇒ UV divergences (and finite regularization artifacts) have to cancel
at cross-section level
⇒ Need a consistent UV regularization (not cut-off!)
⇒ Use (Conventional) Dimensional Regularization, and pay
attention to rational terms in (D − 4)/(D − 4)

Convenient trick: Tensor reduction of transverse integrals
(Passarino-Veltman)
Allows to organize better the calculation (reduces the number of
integrals to calculate and of Dirac structures) and show the
cancellation of unphysical divergences already at the integrand level
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One-loop correction to the γT,L → qq̄ LF wave-functions

Diagrams for γT and γL LFWFs: self-energies

γ∗T : q, λ

0

1

x+ = 0x+ → −∞

0′

2

0′′

EDLO EDA EDLO

Diagram A

γ∗T : q, λ

0

1

x+ = 0x+ → −∞

1′

2

1′′

EDLO EDB EDLO

Diagram B

Straightforward to calculate

Clearly factors into LO
wave-function times Form Factor

DimReg prevents quadratic UV
divergences to appear, only
logarithmic ones remain

Contain not only log but also
unphysical log2 soft divergences
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One-loop correction to the γT,L → qq̄ LF wave-functions

Diagrams for γT and γL LFWFs: vertex corrections

γ∗T : q, λ

0

1

x+ = 0x+ → −∞

0′

2

1′

EDV EDA EDLO

Diagram 1

γ∗T : q, λ

0

1

x+ = 0x+ → −∞

0′

2

1′

EDV EDB EDLO

Diagram 2

By far the hardest to calculate

Involves various tensor integrals in
transverse-momentum as well as
various Dirac structures

Contain unphysical log2 soft
divergences which cancel the ones
of the previous graphs.

In the γL case: contain unphysical
power-like soft divergences.

In the γT case: even after tensor
reduction, still not proportional to
the LO LFWF: one extra piece
remain. However, it cancels
between the diagrams 1 and 2.



Full NLO corrections for DIS structure functions in the dipole factorization formalism

One-loop correction to the γT,L → qq̄ LF wave-functions

Diagrams for γT and γL LFWFs: vertex corrections

γ∗T : q, λ

0

1

x+ = 0x+ → −∞

0′

1′

EDV EDLO

Diagram 3

In the γT case: vanishes due to Lorentz symmetry

In the γL case: non-zero, and cancels the unphysical power-like soft
divergences of the other vertex correction graphs.
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One-loop correction to the γT,L → qq̄ LF wave-functions

Diagrams for the γT → qq̄ LF wave-function only

γ∗T : q, λ

0

1

x+ = 0x+ → −∞

0′

2

EDA EDLO

Diagram A’

γ∗T : q, λ

0

1

x+ = 0x+ → −∞

0′

2

EDA EDLO

Diagram 1’

γ∗T : q, λ

0

1

x+ = 0x+ → −∞

1′

2

EDB EDLO

Diagram B’
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1

x+ = 0x+ → −∞

1′

2
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One-loop correction to the γT,L → qq̄ LF wave-functions

Results for NLO γT ,L → qq̄ LFWFs in momentum space

Ψ
γ∗T,L
q0q̄1

=

[
1 +

(
αs CF

2π

)
VT ,L

]
Ψ
γ∗T,L
q0q̄1,LO

+O(e α2
s )

VL = 2

[
log

(
k+

min√
k+

0 k+
1

)
+ 3

4

] [
Γ
(
2− D

2

) (
Q

2

4π µ2

) D
2 −2

− 2 log
(

P2+Q
2

Q
2

)]
+ 1

2

[
log
(

k+
0

k+
1

)]2

− π2

6 + 3 + O (D−4)

VT = VL + 2

[
log

(
k+

min√
k+

0 k+
1

)
+ 3

4

] (
P2+Q

2

P2

)
log
(

P2+Q
2

Q
2

)
+ O (D−4)

Notations: Q
2 ≡ k+

0 k+
1

(q+)2 Q
2,

and relative transverse momentum: P ≡ k0− k+
0

q+ q = −k1 +
k+

1

q+ q

Remark: results consistent with the ones of Boussarie, Grabovsky,

Szymanowski and Wallon, arXiv:1606.xxxxx
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One-loop correction to the γT,L → qq̄ LF wave-functions

Results for NLO γT ,L → qq̄ LFWFs in mixed space

Ψ̃
γ∗T,L
q0q̄1

=

[
1 +

(
αs CF

2π

)
ṼT ,L

]
Ψ̃
γ∗T,L
q0q̄1,LO

+O(e α2
s )

ṼT = ṼL + O (D−4)

= 2

[
log

(
k+

min√
k+

0 k+
1

)
+ 3

4

] [
Γ(2−D

2 )
(4π)

D
2
−2

+ log
(

x01
2 µ2

4

)
− 2Ψ(1)

]
+ 1

2

[
log
(

k+
0

k+
1

)]2

− π2

6 + 3 + O (D−4)

In mixed space: NLO corrections ⇒ rescaling of the LO γT ,L → qq̄
LFWFs by a factor independent of the photon polarization and
virtuality !

Leftover logarithmic UV and soft divergences to be dealt with at
cross-section level.



Full NLO corrections for DIS structure functions in the dipole factorization formalism

DIS at NLO in the dipole factorization

From LFWFs to DIS cross-section

⊗ ⊗

k+0 , x0

k+1 , x1

q+, Q2

⊗ ⊗

k+0 , x0

k+2 , x2

k+1 , x1

q+, Q2

σT ,L(Q2, xBj) =
∑

qq̄ states

∣∣∣Ψ̃γ∗T,L
qq̄

∣∣∣2 [1− 〈S01〉0
]

+
∑

qq̄g states

∣∣∣Ψ̃γ∗T,L
qq̄g

∣∣∣2 [1− 〈S012〉0
]

+ O(αem α
2
s )

Ψ̃
γ∗T,L
qq̄ now known at NLO accuracy in Dim Reg.
⇒ Need to be combined with the qq̄g contribution

⇒ Ψ̃
γ∗T,L
qq̄g is required also in Dim Reg, in order to cancel UV divergences

as well as scheme dependent constants.
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DIS at NLO in the dipole factorization

Example: γL total cross section at NLO

σL = 4Nc αem Re
∑

f e
2
f

∫
d2x0

2π

∫
d2x1

2π

∫ +∞

0

dk+
0

∫ +∞

0

dk+
1

4Q2

q+

(
k+

0

q+

)2 (
k+

1

q+

)2

×
{
δ(k+

0 +k+
1 −q+)

[
K0

(
Qx01

√
k+

0 k+
1

q+

)]2 [
1 + αsCF

π ṼL
reg.

][
1−〈S01〉0

]
+αsCF

π

∫ +∞

k+
min

dk+
2

k+
2

δ(k+
0 +k+

1 +k+
2 −q+)

∫
d2x2

2π

[
q term + q̄ term + leftover

]}

With:

q term =

[
2+
(

2k+
2

k+
0

)
+
(

k+
2

k+
0

)2
] [

x20

x2
20

·
(
x20

x2
20

− x21

x2
21

)]
×
{[

K0(QX012)
]2 [

1−〈S012〉0
]
−
[
K0

(
Qx01

√
(k+

0 +k+
2 )k+

1

q+

)]2 [
1−〈S01〉0

]}

X 2
012 ≡

1

(q+)2

[
k+

0 k+
1 x2

01 + k+
0 k+

2 x2
02 + k+

1 k+
2 x2

12

]
=

qq̄g form. time

2q+
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[
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(

2k+
2
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1

)
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(

k+
2

k+
1

)2
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x21

x2
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·
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x2
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20
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DIS at NLO in the dipole factorization

Example: γL total cross section at NLO

σL = 4Nc αem Re
∑

f e
2
f

∫
d2x0

2π

∫
d2x1

2π

∫ +∞

0

dk+
0

∫ +∞

0

dk+
1

4Q2

q+

(
k+

0

q+

)2 (
k+

1

q+

)2

×
{
δ(k+

0 +k+
1 −q+)

[
K0

(
Qx01

√
k+

0 k+
1

q+

)]2 [
1 + αsCF

π ṼL
reg.

][
1−〈S01〉0

]
+αsCF

π

∫ +∞

k+
min

dk+
2

k+
2

δ(k+
0 +k+

1 +k+
2 −q+)

∫
d2x2

2π

[
q term + q̄ term + leftover

]}
With:

leftover =

[(
k+

2

k+
0

)2

+
(

k+
2

k+
1

)2
] [

K0(QX012)
]2
(
x20 ·x21

x2
20 x2

21

)[
1−〈S012〉0

]

X 2
012 ≡

1

(q+)2

[
k+

0 k+
1 x2

01 + k+
0 k+

2 x2
02 + k+

1 k+
2 x2

12

]
=

qq̄g form. time

2q+
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DIS at NLO in the dipole factorization

Example: γL total cross section at NLO

σL = 4Nc αem Re
∑

f e
2
f

∫
d2x0

2π

∫
d2x1

2π

∫ +∞

0

dk+
0

∫ +∞

0

dk+
1

4Q2

q+

(
k+

0

q+

)2 (
k+

1

q+

)2

×
{
δ(k+

0 +k+
1 −q+)

[
K0

(
Qx01

√
k+

0 k+
1

q+

)]2 [
1 + αsCF

π ṼL
reg.

][
1−〈S01〉0

]
+αsCF

π

∫ +∞

k+
min

dk+
2

k+
2

δ(k+
0 +k+

1 +k+
2 −q+)

∫
d2x2

2π

[
q term + q̄ term + leftover

]}

With:

ṼL
reg. =

1

2

[
log

(
k+

0

k+
1

)]2

− π2

6
+

5

2

UV and soft divergent terms have been moved from ṼL to the q and q̄
terms, as well as a constant 1/2 (rational term (D−4)/(D−4))
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DIS at NLO in the dipole factorization

BK/JIMWLK resummation

1 Assign k+
min to the scale set by the target: k+

min =
Q2

0

2x0 P−
=

xBj Q
2
0

x0 Q2 q+

2 Choose a factorization scale k+
f . k+

0 , k
+
1 , corresponding to a range

for the high-energy evolution Y +
f ≡ log

(
k+
f

k+
min

)
= log

(
x0 Q

2 k+
f

xBj Q2
0 q+

)
3 In the LO term in the observable, make the replacement

〈S012〉0 = 〈S012〉Y +
f
−
∫ Y +

f

0

dY +
(
∂Y +〈S012〉Y +

)
with both terms calculated with the same evolution equation

4 Combine the second term with the NLO correction to cancel its k+
min

dependence and the associated large logs.

⇒ Works straightforwardly in the case of

the naive LL BK equation

the kinematically improved BK equation as implemented in
G.B., PRD89 (2014)

Should also work with the other implementation (Iancu et al., PLB744

(2015)), but requires a bit more work.
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Conclusion

Conclusions

Direct calculation of γT ,L → qq̄ LFWFs at NLO both in momentum
and in mixed space

Full NLO correction to FL and FT obtained from the combination of
the qq̄ and qq̄g contributions:
UV Dim. Reg. used in both cases, in order to have the finite terms
under control.

Phenomenology outlook : All ingredients soon available for fits at
NLO+LL accuracy, and hopefully NLO+NLL accuracy.

Theory outlook : Application of the NLO γT ,L → qq̄ LFWFs to
calculate other DIS observables at NLO?
Extension to the case of massive quarks?
General method of calculation should be useful for
most future NLO calculations in the CGC
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LO γT ,L → qq̄ LFWFs in momentum space

Ψ
γ∗T
q0q̄1,LO

= (2π)D−1δ(D−1)(k1 + k0−q) δα0, α1 µ
2− D

2 e ef

×

 −2k+
0 k+

1

q+
[
P2 + Q

2 − iε
]
 u(0) /ελ(q) v(1)

Ψ
γ∗L
q0q̄1,LO

= (2π)D−1δ(D−1)(k1 + k0−q) δα0, α1 µ
2− D

2 e ef

×

 −2k+
0 k+

1

q+
[
P2 + Q

2 − iε
]
 Q

q+
u(0) γ+ v(1)
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LO γT ,L → qq̄ LFWFs in mixed space

Ψ̃
γ∗T
q0 q̄1,LO

= 2π δ(k+
0 +k+

1−q
+) δα0, α1

e
i

q
q+ ·(k

+
0

x0+k+
1

x1)
e ef µ

2− D
2 (2π)1− D

2

× (−i)
(

Q
|x01|

) D
2
−1

K D
2
−1

(
|x01|Q

)
εiλ xj01

×

{(
k+

0
−k+

1
q+

)
δij uG (0) γ+vG (1)− 1

2 uG (0) γ+[γ i ,γ j ] vG (1)

}

Ψ̃
γ∗L
q0 q̄1,LO

= 2πδ(k+
0 +k+

1−q
+) δα0, α1

e
i

q
q+ ·(k

+
0

x0+k+
1

x1)
e ef µ

2− D
2 (2π)1− D

2

× (−1)
(

Q
|x01|

) D
2
−2

K D
2
−2

(
|x01|Q

)
2k+

0
k+

1
(q+)2 Q uG (0) γ+vG (1)
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Kinematics for Deep Inelastic Scattering (DIS)

γ∗

k
k’

electron

P

proton

p
p+q

q=k-k’

dσep→e+X

dxBj d2Q
=

αem

πxBjQ2

[(
1−y+

y2

2

)
σγp→X
T (xBj ,Q

2) + (1−y)σγp→X
L (xBj ,Q

2)

]

Photon virtuality: Q2 ≡ −q2 > 0

Bjorken x variable: xBj ≡ Q2

2P·q ∈ [0, 1]

Inelasticity: y ≡ 2P·q
(P+k)2 ∈ [0, 1]
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Kinematical regimes of DIS

For Q2 → +∞: target more and more dilute due to DGLAP
evolution.
⇒ QCD-improved parton model more and more valid.

For xBj → 0: target more and more dense
⇒ Linear BFKL evolution eventually breaks down, as well as parton
picture.

Onset of nonlinear collective effects: Gluon saturation!
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Dilute-dense processes at high-energy

High energy scattering:

projectile : momentum qµ ' δµ+q+

target : momentum Pµ ' δµ−P−
⇒ Mandelstam s variable: s ' 2P− q+

Eikonal approximation: Take the high-energy limit s → +∞ and drop
power-suppressed contributions.

Semi-classical approximation: At weak coupling g , dense target →
random classical background field Aµa (x) = O(1/g).

In the semi-classical approximation, the eikonal limit can be obtained by
an infinite boost P− → +∞ of the target field Aµa (x). Hence:

Only the A−a component is relevant

Infinite Lorentz dilation: Aµa (x) independent of x−

Infinite Lorentz contraction: Aµa (x) ∝ δ(x+) (shockwave)
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Eikonal dilute-dense scattering

Recipe for dilute-dense processes at high-energy,
following Bjorken, Kogut and Soper (1971):

Decompose the projectile on a Fock basis at the time x+ = 0, with
appropriate Light-Front wave-functions.

Each parton n scatters independently on the target via a light-like
Wilson line URn(xn) through the target:

URn(xn) = P+ exp

[
ig

∫
dx+ T a

Rn
A−a (x+, xn)

]
with Rn = A, F or F̄ for g , q or q̄ partons.

Include final-state evolution of the projectile remnants.

Comments:

1 Light-cone gauge A+
a = 0 strongly recommended!

2 At this stage, no apparent dependence on s ...
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Dipole factorization for DIS at LO

⊗ ⊗

(1−z1)q
+, x0

z1q
+, x1

q+, Q2

x+ = −∞ x+ = +∞x+ = 0

σγp→X
T ,L (xBj ,Q

2) = 4Nc αem

(2π)2

∑
f e

2
f

∫
d2x0 d

2x1

∫ 1

0

dz1

×Iqq̄,LOT ,L (x01, z1,Q
2)
[
1− 〈S01〉η

]
Bjorken, Kogut, Soper (1971); Nikolaev, Zakharov (1990)

Dipole operator: S01 =
1

Nc
Tr
(
UF (x0)U†F (x1)

)
η: regulator of rapidity divergence of light-like Wilson lines UF (xn).
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DIS at NLO: general structure and real corrections

⊗ ⊗

k+0 , x0

k+1 , x1

q+, Q2

⊗ ⊗

k+0 , x0

k+2 , x2

k+1 , x1

q+, Q2

σγpT ,L(Q2, xBj) = 2 2Nc αem

(2π)2

∑
f e

2
f

∫
d2x0

∫
d2x1

∫ 1

0

dz1

×
{[
Iqq̄,LOT ,L (x01, z1,Q

2) +O(αsCF )
] [

1− 〈S01〉0
]

+
2αsCF

π

∫ 1−z1

zmin

dz2

z2

∫
d2x2

2π
Iqq̄gT ,L (x0, x1, x2, z1, z2,Q

2)
[
1− 〈S012〉0

]}

with zn = k+
n /q

+ and zmin =
xBj
Q2

Q2
0

x0
.

G.B. (2012)
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DIS phenomenology
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Comparison with data on F

Fits of the reduced DIS cross-section σr and its charm contribution σrc at
HERA data with numerical solutions of the running coupling BK
equation.
Albacete, Armesto, Milhano, Quiroga, Salgado (2011)
see also: Kuokkanen, Rummukainen, Weigert (2012);

Lappi, Mäntysaari (2013); . . .

Very good fit, but require a big rescaling of ΛQCD as extra parameter, to
slow down the BK evolution.
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