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Recent developments

• Beyond eikonal expansion for finite target thickness 

• Next-to-eikonal corrections for gluon production 

• Next-to-next-to-eikonal corrections 

• Lipatov vertex and numerical estimates 

• TMDs and Helicity observables 

• Evolution of gluon TMD 

• Definition and evolution of helicity distributions in CGC
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Eikonal approximation

• Transverse coordinates of partons in the projectile remain frozen 
during multiple interaction with target 

• No emissions inside the target 

• Helicity is unchanged along the multiple scatterings

x? U(x?)
Wilson line

Formally valid for partons with infinite energy

Corrections ⇠ 1

s



TMDs

• Evolution of gluon TMD 

• Vertices inside the target 

• Helicity observables 

• Quark exchanges 

• Helicity flips
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Figure 4. Lipatov vertex of gluon emission.

We start the calculation with the expansion of the gluon fields in F(βB, z⊥) in the first

order in slow “quantum” field:
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where the gauge links and Fm
•i are made of fast “external” fields. The corresponding vertex

of gluon emission is given by
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The diagrams in figure 4a, 4b, and 4(c-d) correspond to different regions of integration over

y∗ in eq. (4.3): y∗ > σ∗, −σ∗ > y∗, and σ∗ > y∗ > −σ∗, respectively.
The trivial calculation of figure 4a contribution yields
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4.2.1 Diagram in figure 4b

Next step is the calculation of figure 4b contribution. Using the vertex of gluon emission

from the shock wave (B.30) one obtains
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Figure 5. Virtual part of the evolution kernel.

4.4.1 Diagram in figure 5a

Let us start with the diagram in figure 5a. Using eq. (3.11) and (B.27) we get
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(as usual we assume that there are no external fields outside [σ∗,−σ∗] interval). Moreover,
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(recall that
p2⊥
αsσ∗ ≪ 1 if the transverse momenta in the loop are of order of transverse

momenta of external fields).
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Figure 1. Diagrams contributing to the quark helicity TMD gq1L(x, kT ) at small-x.

From the analysis of small-x SIDIS and TMDs for polarized targets carried out in [41]

we conclude that to calculate g1L(x, kT ) one has to sum up the diagrams shown in figure 1

(with all other potentially contributing diagrams canceling out). We assume that the

virtual photon is moving along the light-cone “+” direction and work in the A+ = 0

light-cone gauge. As before, the shaded rectangles in figure 1 denote the shock wave,

though (an example of) the polarization-dependent interaction with the target is shown

explicitly on top of the shock wave. If we model our proton as a large nucleus [4–6], which

is the standard practice in saturation calculations, we would assume that the polarization-

dependent interaction happens with one of the longitudinally polarized nucleons (with a

sum over interactions with all polarized nucleons implied). For the real proton one can

think of longitudinally polarized partons instead of nucleons, described by some helicity

TMD g1L(x0, kT ) at the initial value x0 of Bjorken-x. Note that the virtual photon does

not interact with the shock wave when it goes through it: diagrams in figure 1 are non-zero

because we are using light-front perturbation theory (LFPT) [69, 70].

Just like in [41] we begin by writing the quark production cross section in SIDIS,

this time based on the diagrams in figure 1. The SIDIS cross section is weighted by the

polarization of the produced quark σ and is summed over σ as well to give2
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where Ψγ∗→qq̄ is the light-cone wave function for the γ∗ → qq̄ splitting given by
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2Let us point out that the analysis in [41] which led to the diagrams in figure 1 was performed for

the quark TMD (in which the final-state interactions of the produced quark are defined to occur via an

unpolarized gauge link), and not for the SIDIS cross section (where they may occur in a polarization-

dependent way). Nonetheless, the diagrams in figure 1 give us the leading-energy contribution to the SIDIS

cross section, which is extracted from eq. (2.1) below and is given in eq. (2.6). The terms in which the

quark line scatters in a polarization-dependent way are not DLA: note that eq. (2.1) also contains some

non-DLA terms that are neglected in obtaining eq. (2.6).
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Finite thickness corrections

• Allow partons to move in transverse 
coordinate space while traversing the 
target 

• Use in-medium propagator
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Next-to-eikonal expansion
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Similarly for the other one but with two field insertions

When plugging this into expressions for observables, we get new operators

Decorated dipoles Oj
(1)(x?, y?) =

1

N

2
c � 1

D
Tr

h
U†(x?)U j

(1)(y?)
iE

O(2)(x?, y?) =
1

N

2
c � 1

⌦
Tr

⇥U†(x?)U(2)(y?)
⇤↵



What about evolution?

• New (and old) operators have to be defined inside a factorization 
scheme to regulate rapidity divergences 

• Current calculations only LO 

• Diagrams for the rapidity evolution have to be considered at the same 
level of accuracy (next-to-eikonal) 

• Small-x evolution is driven by emission of soft gluons, which are more 
likely to be in a region of phase space where the eikonal approximation 
breaks down 

• It has already been stablished that finite energy considerations play an 
important role in determining the value of the rapidity to which quantities 
should be evolved in NLO calculations



Next-to-eikonal evolution for 
regular dipoles

• Modify derivation of the BK equation 

• Insert expansion of the in-medium 
propagator for terms where the soft gluon 
interacts with the medium 

• Include diagrams with the soft emission 
inside the target 

• Analog in theory of jet quenching 

• Hamiltonian formulation for evolution in 
extended media 

• Motivated by double log contributions to 
momentum broadening and energy loss
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Next-to-eikonal evolution for 
regular dipoles

Schematically
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Next-to-eikonal evolution for 
regular dipoles
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Next-to-eikonal evolution for 
regular dipoles

• Divergence comes from calculating the kernel for all possible 
emissions. It can be solved by restricting phase space to the 
region where next-to-eikonal corrections are relevant 

• Once this is done the divergence goes away, including the 
logarithmic divergence responsible for the evolution
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Regulating the kernels
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is a cumbersome combination of derivatives of WW fields

The boundaries of the phase space for which next-to-
eikonal corrections are relevant are put in the momentum 
integral in the WW field

K0

Similar to kinematical improvement of BK



Kinematical improvement of BK

• It has been shown that finite energy corrections are relevant 
for NLO calculations in the CGC context 

• One of the proposed ways of incorporating these effects in 
the calculations is to impose a kinematical constraint which is 
equivalent to ordering in p- to avoid an over subtraction of the 
rapidity divergence 

• Such approach cuts off the phase space where the next-to-
eikonal corrections become relevant, in agreement with our 
result of no log enhancement from next-to-eikonal terms
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JIMWLK evolution for decorated 
dipoles

• The eikonal evolution of the decorated dipoles found in 
calculations for particle production at next-to-eikonal 
accuracy can be evolved using JIMWLK
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Conclusions

• Next-to-eikonal corrections do not have rapidity logs and therefore 
do not change LL small-x evolution 

• This is consistent with previous observations about finite energy 
considerations for NLO calculations 

• Even though the formalism used is the same used in jet quenching 
calculations, the results are very different since the relevant 
regions of phase space are very different. The double log 
enhancement in jet quenching comes from very soft gluons for 
which the medium is effectively infinite 

• JIMWLK can be (formally) used to derive small-x evolution for the 
new operators involved in next-to-eikonal corrections


