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Work in progress in collaboration with : B. Schenke, S. Schlichting & R. Venugopalan

How to propagate the correlations generated in initial 
state to the final state particles ?

Initial state models based on CGC —> ab-initio framework 
for correlated multi-particle production in small systems 

Approach I : Hydrodynamic evolution (widely discussed in this 
conference)

Approach II : Scheme of fragmentation (topic of this talk)

This is the very first attempt to combine solutions of CYM   
equation with Lund string fragmentation



Goal : Study the role of initial state dynamics on bulk 
observables that are attributed to collectivity 

We need : 
• An ab-initio framework of particle production 
• Full treatment of different sources of fluctuations 
• State-of-the art treatment of fragmentation 
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Focus : High multiplicity events in the collisions of small 
systems : p+p and p/d+A

Outline



Details of the framework

• Full solutions of CYM on 
2+1D lattice : IP-Glasma 
Monte-Carlo model of initial 
conditions : constrained by 
HIC data 

• Lund model of fragmentation 
in PYTHIA to produce 
particles from gluons: default 
parameters to avoid tuning 
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Sjostrand, Mrenna, Skands hep-ph/0603175

Schenke, PT, Venugopalan 1202.6646
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Initial state of the IP-Glasma model 
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Dipole amplitude 
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McLerran, PT 1508.03292

Stochastic 
splitting of 

dipoles 

• IP-Sat model —> color charge density of colliding 
hadrons : constrained by HERA DIS e-p data 

• Non-perturbative sources of fluctuations introduced                                                                                                                                                        
by fluctuating the average saturation scale  

Marquet et al               
hep-ph/0606233 



Step-I : sample gluons from IP-Glasma  

Perform e-by-e classical Yang-
Mills evolution till time  

  

Sample gluons in momentum 
space in the range :

6

Glasma distribution is boost invariant : 
Distribution of Gluons —> uniform in rapidity    

Bulk observables in p+p collisions using Yang-Mill dynamics and Lund string

fragmentation

I. YANG-MILLS EVOLUTION : IP-GLASMA

The current implementation of IP-Glasma model in-
cludes three di↵erent sources of fluctuations : 1) impact
parameter of collisions, 2) intrinsic saturation scale of the
proton, 3) the spatial distribution of color charge density,
constrained by IP-Sat parametrization of HERA data.

The fluctuation of impact parameter is determined by
the di↵erential probability

dP

d

2

b

(b) =
1� e

��ggN
2
gTpp(b)

R
d2b

⇣
1� e

��ggN
2
g Tpp(b)

⌘
, (1)

where T

pp

is the e↵ective overlap area of the two pro-
tons and N
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is the e↵ective partonic cross section,
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=70 mb.
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where the value of � = 0.5 has been adjusted previously
to fit the inclusive charged particle multiplicity distribu-
tion in p+p collisions at 7 TeV.

A given configuration of the color charge densities for
the colliding protons ⇢a
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II. SAMPLING GLUONS AFTER ⌧ ⇠ 1/QS

The gluon multiplicity density dN
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with N = 400 being the number of lattice sites (with a
length of L = 8 fm) in one dimension, here
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is the e↵ective lattice momentum squared at each lattice
point.
The e↵ect of running coupling is introduced by multi-
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FIG. 1. Initial distribution of gluon density for a single IP-

Glasma event and a single configuration of the the sampled

gluons in momentum space shown by black points.

Here the scale for running is chose to be µ = k̃

T

, de-
fined in Eq.5. Assuming boost invariant distributions,
a the total number of gluons N

g

in a given event over
a range of rapidity �y

max

can be obtained by integrat-
ing Eq.4 over a maximum transverse momentum range
of kT,max

. For every event N

g

number of gluons are
sampled with transverse momentum distributed accord-
ing to Eq.4 with uniform distribution in rapidity over
the range of �y

max

. The value of kT,max

and �y

max

over which the gluons are sampled are parameters in
this study. The value of y

max

can vary in the range
0 < |y

max

| < log(
p
s/2m

p

), with m

p

being the mass of
a proton. The maximum range of transverse momentum
for sampling the gluons is chosen to be k

T,max

= 10 GeV.
The distribution of initial gluon density at time ⌧ = 0.4
fm and the position of sampled gluons are shown in Fig.1.

III. RECONNECTION OF STRINGS

Input to the Lund fragmentation algorithm in
PYTHIA are color neutral strings in momentum space

Bulk observables in p+p collisions using Yang-Mill dynamics and Lund string
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FIG. 1. Initial distribution of gluon density for a single IP-

Glasma event and a single configuration of the the sampled

gluons in momentum space shown by black points.
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III. RECONNECTION OF STRINGS

Input to the Lund fragmentation algorithm in
PYTHIA are color neutral strings in momentum space

τ ∼ 1/QS



Step-II : Implementing PYTHIA Strings  
p y
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Connect the gluons close in phase space to color neutral strings 
with ~                                  of gluons per stringsNgs = Ng/⟨Q2

SS⊥⟩

px

py

px

y

Λ =
∑
i
log

(
si

2Λ2
QCD

)Minimize :
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• Promising results on multiplicity distributions 
• Observables are to be studied in bins of multiplicity 
•  .

Multiplicity distribution

NBD fluctuation is a  
natural consequence 

of multi-particle  
production in CGC
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Single Inclusive distributions

9

Minimum bias spectra --> well reproduced

Multiplicity dependence of         —> high multiplicity events in 
CGC —> driven by rare large      events 
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Identified particle distributions
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Reasonable agreement 
without any tuning  
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Mass ordering of average  transverse 
momentum
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Mass ordering of average transverse momentum—> naturally 
reproduced in this framework (even at very low multiplicity)
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Effect of running coupling —> increase in  
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Azimuthal Correlations in CGC

⇠ Q�1
s

~E
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• Intrinsic momentum space 
correlation from initial state  

• Originate from partons (probe) 
scattering off a color domain 
(target) 

• Suppressed by number of 
color sources / domains 

Very distinct from Hydrodynamic flow (driven by geometry )

Kovner, Lublinsky 1012.3398

Lappi, Schenke, Schlichting, Venugopalan 1509.03499
Dumitru, Giannini 1406.5781                                          

Dumitru, Dusling, Gelis, Jalilian-Marian, 
.     Lappi, Venugopalan 1009.5295

Dusling, Venugopalan 1201.2658
Kovchegov, Wertepny 1212.1195



Azimuthal correlations in CGC (gluons 
only)
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tion shown in Fig.3. The variation of hp
T

i with scaled
charged hadron multiplicity N

ch

/hN
ch

i for ⇡

±
,K

± and
p(p̄) is shown in Fig.6.

We see mass ordering for hp
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apples since the measurement is done over a very wide
range �⌘ ⇠4.8 of rapidity over which our approximation
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Azimuthal correlations (after fragmentation)
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h, KS, Λ

π, K, p

Low multiplicity High multiplicity

Azimuthal correlations identified particles  
Preliminary result
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h, KS, Λ

π, K, p

Azimuthal correlations identified particles  

Some hints of mass dependence
—> Need to study even higher  

multiplicity events & p+p @13 TeV

CMS data
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Summary
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ALICECMS• Very first attempt to combine CGC 
based IP-Glasma  with Lund 
model of fragmentation in PYTHIA 

• Quantitative description for a 
number on of bulk observables in 
p+p collisions looks promising 

• Observed mass ordering of            
is very well reproduced 

• Hints of mass dependence of v2  
observed —> need to study 
higher multiplicity bins 

⟨pT ⟩

Next step :  higher multiplicity p+p and p+Pb in this framework 
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Details of CGC the framework
• Fundamental objects are Color 

Charge density matrices ρa(x⊥,Y) 
Local Gaussian distribution W[ρ]  
(MV-Model)   

• Color field before collisions : solving 
Yang Mills equations [Dμ,Fμν] = Jν  for 
each configuration of source  ρ(x⊥)

21

Domains of 
chromo-electric 
field

Classical Yang-Mills approach : IP-Glasma
Schenke, PT, Venugopalan 1202.6646

E-by-E solve CYM for two colliding nuclei : [Dµ,Fµ⌫ ] = J

⌫

z

tx− (t=−z) x+  (t=z)x+  (t=z)

A  = pure gauge 1 A  = pure gauge 2

A   = 0

A   = ?

= constant

Color charge density for one A+A collision

Two point correlator for one A+A collision

⇢(x?) sampled from local Gaussian distribution W [⇢]
⌦
⇢a(x?)⇢

b(y?)
↵
= �ab�2(x?�y?)g

2µ2(x?)

lattice implementation Krasnitz, Venugopalan, hep-ph/9809433 Lappi, hep-ph/0303076

ICPAQGP 2015, Kolkata, India 20/34

Glasma flux tubes —> 
free streaming gluons

before collisions (τ<0)

Classical Yang-Mills approach on 2+1D lattice
Schenke, Tribedy, Venugopalan 1202.6646

E-by-E solve CYM for two colliding nuclei : [Dµ, Fµ⌫ ] = J⌫

TPSC%seminar,%IIT%Roorkee%%29/11/12% 39%

Color%Glass%Condensate%

where

J+ = �(x�)⇢
1

(x?)

J� = �(x+)⇢
2

(x?)

J i = 0 (11)

and we have restricted ourselves to work in a gauge where the link operators along

the particle trajectories drop out.

Before the collision takes place, we find a solution of the equations of motion

to be

A+ = 0

A� = 0

Ai = �(x�)�(�x+)↵i
1

(x?) + �(x+)�(�x�)↵i
2

(x?) (12)

This is a solution of the Yang-Mills equations in all of space-time except on or

within the forward light cone, as shown in Fig. 3. In the forward light cone, we

1 2

3
x+x-

x0

x3

Fig. 3: Regions with di�erent

structures of the gauge poten-

tial:

In regions 1 and 2 we have the

well known one nucleus solu-

tions ↵1,2. While in the back-

ward light cone there the gauge

potential is vanishing we have

a nontrivial solution in the for-

ward lightcone, region 3

must add in extra pieces in order to have a solution. This will be done below. The
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Input to CGC framework —> dipole cross section e+p/A 

(III) Intrinsic fluctuations of saturation scale

r
q

q
z

1-z

*γ

s

With evolution of rapidity each dipole split with probability ~ αs dY  
—> dipole splitting is however stochastic 

Color dipole picture : distribution of partons —> dist. of color dipoles  

Stochastic dipole splitting —> not present in BK/JIMWLK —>beyond CGC
22
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1

Fig. 1. The amplitude T for a typical partonic realization as a function of
ρ = ln(r2

0/r
2). The individual dipoles seen at impact parameter b are represented

by a short vertical line. The straight line is the sum of their contributions to the
amplitude. In the saturation regime, the dipole description breaks down, that is
indicated by the filled box. Upper right corner: the contribution of a single dipole
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of the two child dipoles. This leads to the following evolution law
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As anticipated, Eq. (7) is not a closed equation for ⟨T ⟩: it depends upon
the correlator ⟨T (z)T (r−z)⟩Y . A mean field approximation ⟨T (z)T (r−z)⟩ ≃
⟨T (z)⟩⟨T (r−z)⟩ would cast Eq. (7) into a closed form, known as the Balitsky-
Kovchegov (BK) equation [1,6]. The linearized form of Eq. (7) is recognized
as the (dipole version of) BFKL equation [5].

Let us finally discuss the typical shape of T (r) as resulting from the previous
considerations. It is a well known characteristic of the BFKL evolution that

4 The impact parameter dependence could be easily put back in Eq. (7). We have
omitted it for simplicity and since it is enough for our purpose to assume locality
of the evolution.
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Fig. 32. Momentum flow demonstrating the generation of the near-side collimation. The intrinsic
parton momentum of either hadron is on the order QS and therefore |p?�k?| ⇠ |q?�k?| ⇠ QS

where k? is a loop momentum constrained such that |k?| ⇠ QS .

form of which can be found in,219 originally fit to the p-p dihadron correlations
before the availability of any data on p-Pb. The good agreement with the subsequent
p-Pb data shows the robustness of this modeling of non-perturbative hadronization
dynamics. We should stress that the associated yield (the integral over �pq on the
near side) is insensitive to the functional form of the smearing function.

In order to convert the two-gluon correlations presented above into the hadronic
observables, an appropriate hadronization procedure must be used. In what fol-
lows we show results using the NLO KKP parameterization220 of fragmentation
functions for gluon to charged hadrons. It has recently been found that the NLO
KKP results are troublesome at LHC energies221 and suggested that the gluon-to-
hadron fragmentation functions were a probable source of this problem. Extraction
of new fragmentation functions by fits to the more recently available single inclusive
hadronic data would be highly valuable.

Figure 33 shows a comparison of the di-hadron correlation compared to the
results for high multiplicity p-p collisions. The full numerical calculations of all eight
glasma graphs along with the away-side mini-jet contribution with BFKL evolution
corroborate the qualitative picture shown in figure 30. The centrality dependence
is controlled by an appropriate choice of initial saturation scale Q

2

s0 that fixes the
initial condition in the rcBK evolution equation. Fits to deep-inelastic scattering
constrain Q

2

s0 = 0.168 GeV2 and we take this value as representative of min. bias
p-p collisions. For convenience, we work with integer multiples of this saturation
scale. For example, central p-p (No✏ine

trk

� 110) corresponds to 5-6 times this min.
bias value.

The overall strength of the glasma graph contribution is controlled by ↵s which

Momentum flow in Glasma graph (origin of ridge-like 
correlation)

Dusling, Li, Schenke 1509.07939


