Bulk observables in small colliding systems using Yang-Mill dynamics and Lund string fragmentation

Prithwish Tribedy



3rd International Conference on the Initial Stages in High-Energy Nuclear Collisions

Instituto Superior Técnico, Alameda Campus, Lisbon, Portugal, on May 23rd-27th 2016





### Outline

Initial state models based on CGC —> *ab-initio* framework for correlated multi-particle production in small systems

How to propagate the correlations generated in initial state to the final state particles ?

Approach I : Hydrodynamic evolution (widely discussed in this conference) Approach II : Scheme of fragmentation (topic of this talk)

This is the very first attempt to combine solutions of CYM equation with Lund string fragmentation

Work in progress in collaboration with : B. Schenke, S. Schlichting & R. Venugopalan

### Outline

Goal : Study the role of initial state dynamics on bulk observables that are attributed to collectivity

Focus : High multiplicity events in the collisions of small systems : p+p and p/d+A

We need :

- An *ab-initio* framework of particle production
- Full treatment of different sources of fluctuations
- State-of-the art treatment of fragmentation

### Details of the framework

 Full solutions of CYM on 2+1D lattice : IP-Glasma Monte-Carlo model of initial conditions : constrained by HIC data

Schenke, PT, Venugopalan 1202.6646

 Lund model of fragmentation in PYTHIA to produce particles from gluons: default parameters to avoid tuning

Sjostrand, Mrenna, Skands hep-ph/0603175



### Initial state of the IP-Glasma model

- IP-Sat model —> color charge density of colliding hadrons : constrained by HERA DIS e-p data
- Non-perturbative sources of fluctuations introduced by fluctuating the average saturation scale

McLerran, PT 1508.03292

### Step-I : sample gluons from IP-Glasma

Perform e-by-e classical Yang-Mills evolution till time  $\tau \sim 1/Q_{\scriptscriptstyle S}$ 

$$\frac{dN_g}{dyd^2k_T} = \frac{2}{N^2} \frac{1}{\tilde{k}_T} \left[ \frac{g^2}{\tau} \operatorname{tr} \left( E_i(\mathbf{k}_\perp) E_i(-\mathbf{k}_\perp) \right) + \tau \operatorname{tr} \left( \pi(\mathbf{k}_\perp) \pi(-\mathbf{k}_\perp) \right) \right]$$

Sample gluons in momentum space in the range :

$$0 < |y_{\max}| < \log(\sqrt{s}/2m_p)$$



Glasma distribution is boost invariant : Distribution of Gluons —> uniform in rapidity

### Step-II: Implementing PYTHIA Strings



Connect the gluons close in phase space to color neutral strings with ~  $N_{\rm gs}=N_g/\langle Q_S^2S_\perp\rangle$  of gluons per strings

### Multiplicity distribution



- Promising results on multiplicity distributions
- Observables are to be studied in bins of multiplicity
- Some uncertainties in the estimation of  $N_{\rm ch}/\langle N_{\rm ch}\rangle$

### Single Inclusive distributions

Minimum bias spectra --> well reproduced



Multiplicity dependence of  $\langle p_T \rangle$  —> high multiplicity events in CGC —> driven by rare large  $Q_S$  events

Running  $\alpha_{s}$  effect —> high  $p_{T}$ 

#### Identified particle distributions



# Mass ordering of average transverse momentum



Mass ordering of average transverse momentum—> naturally reproduced in this framework (even at very low multiplicity)

# Mass ordering of average transverse momentum



Effect of running coupling —> increase in  $\langle p_T \rangle$ 

### Azimuthal Correlations in CGC

- Intrinsic momentum space correlation from initial state
- Originate from partons (probe) scattering off a color domain (target)
- Suppressed by number of color sources / domains



Dumitru, Dusling, Gelis, Jalilian-Marian, Lappi, Venugopalan 1009.5295 Kovner, Lublinsky 1012.3398 Dusling, Venugopalan 1201.2658 Kovchegov, Wertepny 1212.1195 Dumitru, Giannini 1406.5781 Lappi, Schenke, Schlichting, Venugopalan 1509.03499

#### Very distinct from Hydrodynamic flow (driven by geometry)



### Azimuthal correlations (after fragmentation)





Dilution of correlations after the fragmentation

### Azimuthal correlations identified particles



17

### Azimuthal correlations identified particles



Some hints of mass dependence —> Need to study even higher multiplicity events & p+p @13 TeV



### Summary

- Very first attempt to combine CGC based IP-Glasma with Lund model of fragmentation in PYTHIA
- Quantitative description for a number on of bulk observables in p+p collisions looks promising
- Observed mass ordering of  $\langle p_{_T}\rangle$  is very well reproduced
- Hints of mass dependence of v<sub>2</sub> observed —> need to study higher multiplicity bins



Next step : higher multiplicity p+p and p+Pb in this framework

## back-up



### (III) Intrinsic fluctuations of saturation scale

Input to CGC framework —> dipole cross section e+p/A

Color dipole picture : distribution of partons —> dist. of color dipoles



With evolution of rapidity each dipole split with probability ~  $\alpha_s dY$  —> dipole splitting is however stochastic

Stochastic dipole splitting —> not present in BK/JIMWLK —>beyond CGC

### Momentum flow in Glasma graph (origin of ridge-like correlation)

Dusling, Li, Schenke 1509.07939

