Bulk observables in small colliding systems using Yang-Mill dynamics and Lund string fragmentation

Prithwish Tribedy

BROOKHRNEN
NATIONAL LABORATORY

3rd International Conference on the Initial Stages in High-Energy Nuclear Collisions

Instituto Superior Técnico, Alameda Campus, Lisbon, Portugal, on May 23rd-27th 2016

Outline

Initial state models based on CGC $->$ ab-initio framework for correlated multi-particle production in small systems

How to propagate the correlations generated in initial state to the final state particles ?

Approach I : Hydrodynamic evolution (widely discussed in this conference)
Approach II : Scheme of fragmentation (topic of this talk)

This is the very first attempt to combine solutions of CYM equation with Lund string fragmentation

Outline

Goal : Study the role of initial state dynamics on bulk observables that are attributed to collectivity

Focus: High multiplicity events in the collisions of small systems : $p+p$ and $p / d+A$

We need:

- An ab-initio framework of particle production
- Full treatment of different sources of fluctuations
- State-of-the art treatment of fragmentation

Details of the framework

- Full solutions of CYM on 2+1D lattice: IP-Glasma Monte-Carlo model of initial conditions : constrained by HIC data
- Lund model of fragmentation in PYTHIA to produce particles from gluons: default parameters to avoid tuning

Sjostrand, Mrenna, Skands hep-ph/0603175

Initial state of the IP-Glasma model

- IP-Sat model —> color charge density of colliding hadrons : constrained by HERA DIS e-p data
- Non-perturbative sources of fluctuations introduced by fluctuating the average saturation scale

McLerran, PT 1508.03292

$$
P\left(\ln \left(Q_{S}^{2} /\left\langle Q_{S}^{2}\right\rangle\right)\right)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{\ln ^{2}\left(Q_{S}^{2}\left(\mathbf{s}_{\perp}\right) /\left\langle Q_{S}^{2}\left(\mathbf{s}_{\perp}\right)\right\rangle\right)}{2 \sigma^{2}}\right) \quad \sigma^{2}(Y)=\sigma_{0}^{2}\left(Y_{0}\right)+\sigma_{1}^{2}\left(Y-Y_{0}\right)
$$

Step-I : sample gluons from IP-Glasma

Perform e-by-e classical YangMills evolution till time $\tau \sim 1 / Q_{S}$

$$
\begin{aligned}
\frac{d N_{g}}{d y d^{2} k_{T}}=\frac{2}{N^{2}} \frac{1}{\tilde{k}_{T}} & {\left[\frac{g^{2}}{\tau} \operatorname{tr}\left(E_{i}\left(\mathbf{k}_{\perp}\right) E_{i}\left(-\mathbf{k}_{\perp}\right)\right)\right.} \\
& \left.+\tau \operatorname{tr}\left(\pi\left(\mathbf{k}_{\perp}\right) \pi\left(-\mathbf{k}_{\perp}\right)\right)\right]
\end{aligned}
$$

Sample gluons in momentum space in the range :

$$
0<\left|y_{\max }\right|<\log \left(\sqrt{s} / 2 m_{p}\right)
$$

Glasma distribution is boost invariant :
Distribution of Gluons $->$ uniform in rapidity

Step-II : Implementing PYTHIA Strings

Connect the gluons close in phase space to color neutral strings with $\sim N_{\mathrm{gs}}=N_{g} /\left\langle Q_{S}^{2} S_{\perp}\right\rangle$ of gluons per strings

Multiplicity distribution

- Promising results on multiplicity distributions
- Observables are to be studied in bins of multiplicity
- Some uncertainties in the estimation of $N_{\mathrm{ch}} /\left\langle N_{\mathrm{ch}}\right\rangle$

Single Inclusive distributions

Minimum bias spectra --> well reproduced

Multiplicity dependence of $\left\langle p_{T}\right\rangle \longrightarrow>$ high multiplicity events in CGC \longrightarrow driven by rare large Q_{S} events

Running a_{s} effect \longrightarrow high $_{p_{T}}$

Identified particle distributions

Reasonable agreement without any tuning

Mass ordering of average transverse momentum

data arXiv:1604.06736

Mass ordering of average transverse momentum—> naturally reproduced in this framework (even at very low multiplicity)

Mass ordering of average transverse momentum

Effect of running coupling \longrightarrow increase in $\left\langle p_{T}\right\rangle$

Azimuthal Correlations in CGC

- Intrinsic momentum space correlation from initial state
- Originate from partons (probe) scattering off a color domain (target)
- Suppressed by number of color sources / domains

Dumitru, Dusling, Gelis, Jalilian-Marian,
Lappi, Venugopalan 1009.5295
Kovner, Lublinsky 1012.3398
Dusling, Venugopalan 1201.2658
Kovchegov, Wertepny 1212.1195
Dumitru, Giannini 1406.5781
Lappi, Schenke, Schlichting, Venugopalan 1509.03499
Very distinct from Hydrodynamic flow (driven by geometry)

Azimuthal correlations in CGC (gluons only)

$$
\frac{d N^{\text {pair }}}{d \Delta \phi}=\left\langle\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{d N}{d \phi}(\phi) \frac{d N}{d \phi}(\phi+\Delta \phi)\right\rangle
$$

$$
\frac{2 \pi}{N_{\text {trig }} N_{\text {assco }}} \frac{d N^{\text {pair }}}{d \Delta \phi}=1+\sum_{n} 2 V_{n \Delta} \cos (n \Delta \phi)
$$

Azimuthal correlations (after fragmentation)

Real events

Azimuthal correlations for charged hadrons

After subtraction of

1) Mixed-events
2) Low-mult events

$$
V_{n \Delta}^{\mathrm{sub}}=V_{n \Delta}-V_{n \Delta}^{\mathrm{low}-\mathrm{mult}} \times \frac{N_{\mathrm{assoc}}^{\mathrm{low}-\mathrm{mult}}}{N_{\mathrm{assoc}}}
$$

Dilution of correlations after the fragmentation

Azimuthal correlations identified particles

Low multiplicity
π, K, p
\longrightarrow

Preliminary result

High multiplicity

h, Ks, \wedge

Azimuthal correlations identified particles

Some hints of mass dependence \rightarrow Need to study even higher multiplicity events \& p+p @13 TeV

$$
8<N_{\mathrm{ch}} /\left\langle N_{\mathrm{ch}}\right\rangle<11
$$

Summary

- Very first attempt to combine CGC based IP-Glasma with Lund model of fragmentation in PYTHIA
- Quantitative description for a number on of bulk observables in $\mathrm{p}+\mathrm{p}$ collisions looks promising
- Observed mass ordering of $\left\langle p_{T}\right\rangle$ is very well reproduced
- Hints of mass dependence of v_{2} observed —> need to study higher multiplicity bins

Next step : higher multiplicity $\mathrm{p}+\mathrm{p}$ and $\mathrm{p}+\mathrm{Pb}$ in this framework

back-up

Details of CGC the framework

- Fundamental objects are Color Charge density matrices $\boldsymbol{\rho}^{\mathbf{a}}\left(\boldsymbol{x}_{\perp}, \boldsymbol{Y}\right)$ Local Gaussian distribution W[ค] (MV-Model)

$$
\left\langle\rho^{a}\left(\mathbf{x}_{\perp}\right) \rho^{b}\left(\mathbf{y}_{\perp}\right)\right\rangle=\delta^{a b} \delta^{2}\left(\mathbf{x}_{\perp}-\mathbf{y}_{\perp}\right) g^{2} \mu^{2}\left(\mathbf{x}_{\perp}\right)
$$

- Color field before collisions : solving Yang Mills equations $\left[D_{\mu}, F_{\mu v}\right]=J_{v}$ for each configuration of source $\boldsymbol{\rho}\left(\boldsymbol{x}_{\perp}\right)$

after collisions ($\mathrm{\tau}>0$)
Glasma flux tubes $->$ free streaming gluons

(III) Intrinsic fluctuations of saturation scale

 Input to CGC framework \longrightarrow dipole cross section e+p/AColor dipole picture : distribution of partons \longrightarrow dist. of color dipoles

With evolution of rapidity each dipole split with probability $\sim a_{s} d Y$ \rightarrow dipole splitting is however stochastic

Stochastic dipole splitting \longrightarrow not present in BK/JIMWLK —>beyond CGC

Momentum flow in Glasma graph (origin of ridge-like correlation)

Dusling, Li, Schenke 1509.07939

