Measurement of direct photons at forward rapidities in p-A collisions at LHC with ALICE

a probe for nuclear PDFs and saturation

Dieter Roehrich
(University of Bergen, Norway)
for the ALICE-FoCal Collaboration

- 1. Low-x physics and gluon saturation in p/d+A
 - results from RHIC and LHC
- 2. Direct Photons
- 3. FoCal an ALICE Upgrade Proposal
 - performance studies
 - detector R&D

Experimental results from RHIC and LHC

- Gluon saturation
 From DIS, HERA:
 gluon density increases
 rapidly at low x
 - → problems with unitarity (finite cross sections)

Kinematics

2 — 1 process x_{b_1,x_3} x_{k_3} x_{k_4} x_{k_5} $x_{k_$

10-4

10-2

X

10-6

- Particle production in nuclear collision at forward rapidities
 - Observation: suppression of hadron production in d+Au / p+Pb as compared to p+p
 - → nuclear modification factor

Charged hadrons – R_{dAu} at different pseudorapidities (RHIC)

BRAHMS: PRL **93**, 242303 (2004)

$$R_{dAu} = \frac{1}{\langle N_{coll} \rangle} \frac{d^2N^{d+Au}/dp_T d\eta}{d^2N^{pp}_{inel}/dp_T d\eta}$$
where $\langle N_{coll} \rangle = 7.2 \pm 0.3$

- Clear suppression as η changes from 0 to 3.2
- CGC model describes R_{dAu} and R_{CP}

D. Kharzeev, Y.V. Kovchegov,K. Tuchin, hep-ph/0405045 (2004);Phys.Lett. B599 (2004) 23-31

Experimental results from RHIC

Results from STAR

p_T (Gev/c) broadening/suppression of away-side peak in dA)

strong suppression of hadron yield

- qualitatively consistent with CGC expectations
- however, many open questions/alternative interpretations:
 e.g. effects of multiple interactions, beam energy loss, kinematic limits...

Results from p-Pb at LHC (1)

forward/backward ratio RFB

$$R_{FB} = \frac{dN/dp_T(p - going)}{dN/dp_T(Pb - going)}$$

for Φ -mesons in ALICE (dimuons) and for open charm in LHCb

- Φ strongly suppressed at forward rapidity
 - interpretation unclear
- prompt D⁰ suppressed
 - comparison with shadowing (EPS09):
 consistent, but data slightly more suppressed

Results from p-Pb at LHC (2)

ALI-PUB-75287

nuclear modification factor R_{pPb} for charmonium

- J/ψ suppressed at forward rapidity
 - consistent with shadowing (EPS09)
 - not described by a specific CGC calculation

- More recent CGC calculation compatible with observed J/Y
 - → inconclusive

$$R_{pA} = rac{dN/dp_T(pA)}{< N_{coll}(pA) > dN/dp_T(pp)}$$
 6

A probe for gluon density – direct photons

Hadronic observables

interpretation inconclusive

• Electromagnetic probes

- Deep-Inelastic Scattering (DIS)
 - » classical PDF method
 - » not sensitive to gluons at LO
 - » gluons from NLO

- Photon production in hadronic collisions
 - » sensitive to gluons at LO

Direct photons - nPDF vs CGC

Direct photons

- large cross section
- sensitive to small x at forward rapidity: $x \approx 10^{-5}$ at η =4-5 (narrow peak, however with a sizeable tail)

Two scenarios for forward γ production in p +A at LHC

- normal nuclear effects
 NLO and LO nPDFs
- saturation/CGC

\rightarrow strong suppression in direct γR_{pA}

- clean signal for isolated photons
- signal expected at forward η , low-intermediate p_T

ALICE detector & upgrades

Forward measurements: RHIC vs LHC

FoCal in ALICE

• FoCal-E high-granularity Si-W calorimeter for direct (isolated) γ , $e^+e^-(J/\psi)$ and π^0

• FoCal-H hadronic calorimeter for photon isolation and jets

 $z \approx 7$ m (outside magnet) $\rightarrow 3.3 < \eta < 5.3$

• main challenge separate γ/π^0 at high energy

technology

• Si-W calorimeter, effective granularity $\approx 1 \text{mm}^2$

• small Molière radius, high-granularity read-out

FoCal strawman design

absorber

studied in performance simulations:

24 layers: W (3.5mm $\approx 1 \text{ X}_0$) + Si-sensors (2 types)

- low granularity (LG), Si-pads
- high granularity (HG), pixels (e.g. CMOS-MAPS)

	LG	HG
pixel/pad size	≈ 1 cm ²	≈ 30x30 µm²
total # pixels/pads		≈ 2.5 x 10 ⁹
readout channels	≈ 5 x 10 ⁴	≈ 2 x 10 ⁶

assuming $\approx 1 \text{m}^2$ detector surface

Direct-γ / decay-γ separation in pp

direct photon/all > 0.1 for $p_T > 4$ GeV/c

20-40% uncertainty at $p_T = 4 \text{ GeV/c}$, decreases with increasing p_T

FoCal R&D: Si-W pixel and pad readout

20 layer pixel detector

Several groups involved

- full prototype with pixel detectors
 CMOS (MIMOSA) 39M pixels,
 30µm pitch
- use synergy with R&D for ALICE ITS upgrade (ALPIDE)
- full prototype with pad readout

Performed systematic tests

- test beam data from 2 to 250 GeV/c
 (DESY, CERN PS & SPS)
- cosmic muons

R&D results - two shower separation

display of single event (with pile-up) from 244 GeV/c SPS mixed beam

evaluate separation capability: core energy

- calculate shower energy in cylinder of finite radius
- study as function of radius

R&D results: lateral profile and core energy

lateral profiles for 50 GeV/c electrons - comparison to GEANT4

- extremely good spatial resolution $R_{Moliere} \approx 11 mm$ (estimated from cumulative distributions)
- good agreement with simulations using GEANT4 + charge diffusion

energy resolution

- reasonable energy resolution of pixel calorimeter
- response and resolution for core energy hardly affected down to r = 5 mm

Summary

- LHC forward measurements provide unique opportunity for low-x physics
- ALICE experiment has open space to instrument forward rapidities
- FoCal detector in ALICE upgrade proposal for LS3
 - opportunity for forward direct photon measurement
 - particle density/kinematics require extremely high granularity:
 feasible with SiW pixel calorimeter
 - rich physics program
 - » other observables: π^0 , $e^+e^-(J/\psi)$, jets
 - » p+Pb: gluon density, ridge
 - » Pb+Pb: medium effects

