Single inclusive forward hadron production at NLO

Bertrand Ducloué
(University of Jyväskylä)

Initial Stages 2016
Lisbon, 24/05/2016

Our goal is to study QCD in the saturation regime.

\[Y = \ln \frac{1}{x} \]

The production of forward particles is a crucial tool to probe small \(x \) values. Saturation effects should be enhanced by the higher densities in \(pA \) collisions. Here we study the inclusive production of a forward hadron in proton-nucleus collisions: \(pA \rightarrow hX \)
Motivations

Single inclusive forward hadron production at LO in the $q \rightarrow q$ channel:

\[P^+ + P^- + x g + k_\perp \rightarrow p_\perp = z k_\perp, y \]

The values of x_p and x_g probed in the projectile and the target are given by

\[x_p = \frac{p_\perp}{\sqrt{s}} e^y, \quad x_g = \frac{p_\perp}{\sqrt{s}} e^{-y} \]

The dilute projectile is described in terms of well known collinear PDFs.

The dense target is described by an unintegrated gluon distribution \mathcal{F}, which is the Fourier-transform of the fundamental representation dipole correlator:

\[\mathcal{F}(k_\perp) = \int \frac{d^2x d^2y}{(2\pi)^2} e^{-ik_\perp \cdot (x-y)} S(x, y), \quad S(x, y) = \left\langle \frac{1}{N_c} \text{Tr} \, U(x)U^\dagger(y) \right\rangle \]

The LO cross section reads

\[\frac{d\sigma}{d^2p d\eta} = \sum_q \int_\tau^1 \frac{dz}{z^2} x_p q(x_p) \mathcal{F}(k_\perp) D_{h/q}(z), \]

where $D_{h/q}(z)$ are the fragmentation functions.
Motivations

Several LO calculations achieved a quite good description of experimental data, but often with rather large K factors to get the correct normalization

$$p + p \rightarrow \pi^0/h^- + X, \sqrt{s} = 200 \text{GeV}, \ K = 2.5$$

It is important to extend these calculations to higher orders to check the stability of the perturbative expansion and to have more accurate predictions.
Motivations

The expression for the NLO cross section has been computed by Chirilli, Xiao, Yuan

Example of real $q \rightarrow q$ contribution:

Example of virtual $q \rightarrow q$ contribution:

$1 - \xi = \frac{k_g^+}{x_P P^+}$ is the momentum fraction of the incoming quark carried by the gluon
First numerical implementation of the NLO cross section: Staśto, Xiao, Zaslavsky

The cross section becomes negative above some transverse momentum
Several proposals to solve this issue, for example the kinematical constraint/ioffe time cutoff (Altinoluk, Armesto, Beuf, Kovner, Lublinsky). Numerical implementation: Watanabe, Xiao, Yuan, Zaslavsky:

\[\sqrt{s_{NN}} = 200 \text{ GeV} \]
\[y = 2.2 \]

\[\sqrt{s_{NN}} = 5 \text{ TeV} \]
\[y = 1.75 \]

The negativity problem is less severe but still present in some cases.
The purpose of this work:

- Identify the origin of the negativity at large transverse momentum
- See if we can find a way to cure it

For this we make some simplifications

- We consider only the $q \rightarrow q$ channel
- We use a simple gaussian form for the dipole cross section

 Golec-Biernat and Wüsthoff (GBW) model: $S(r) = e^{-\frac{r^2 Q_s^2}{4}}$

Our goal is not (yet) to make predictions to compare to experimental data
The NLO cross section

The expression for the multiplicity at NLO reads

\[
\frac{dN_{pA \rightarrow hX}}{d^2p \, dy_h} = \int_\tau^1 \frac{d\tau}{z^2} D_{h/q}(z) x_p q(x_p) S^{(0)}(k_\perp) \left(\frac{2\pi}{(2\pi)^2} \right)^2 \\
+ \frac{\alpha_s}{2\pi^2} \int \frac{dz}{z^2} D_{h/q}(z) \int_\tau^1 \frac{d\xi}{1-\xi} x_p q(x_p) \left(\frac{x_p}{\xi} \right) \left\{ C_F J_v(k_\perp, \xi) + \frac{N_c}{2} J(k_\perp, \xi) \right\} \quad \leftarrow \text{real NLO term} \\
- \frac{\alpha_s}{2\pi^2} \int \frac{dz}{z^2} D_{h/q}(z) \int_0^1 \frac{d\xi}{1-\xi} x_p q(x_p) \left\{ C_F J_v(k_\perp, \xi) + \frac{N_c}{2} J(k_\perp, \xi) \right\} \quad \leftarrow \text{virtual NLO term}
\]

with

\[
I(k_\perp, \xi) = \int \frac{d^2q}{(2\pi)^2} S(q_\perp) \left(\frac{k - q}{(k - q)^2} - \frac{k - \xi q}{(k - \xi q)^2} \right)^2 \\
J(k_\perp, \xi) = \int \frac{d^2q}{(2\pi)^2} \frac{2(k - \xi q) \cdot (k - q)}{(k - \xi q)^2(k - q)^2} S(q_\perp) - \int \frac{d^2q}{(2\pi)^2} \frac{2(k - \xi q) \cdot (k - l)}{(k - \xi q)^2(k - l)^2} S(q_\perp) S(l_\perp) \\
I_v(k_\perp, \xi) = S(k_\perp) \int \frac{d^2q}{(2\pi)^2} \left(\frac{k - q}{(k - q)^2} - \frac{\xi k - q}{(\xi k - q)^2} \right)^2 \\
J_v(k_\perp, \xi) = S(k_\perp) \left[\int \frac{d^2q}{(2\pi)^2} \frac{2(\xi k - q) \cdot (k - q)}{(\xi k - q)^2(k - q)^2} - \int \frac{d^2q}{(2\pi)^2} \frac{2(\xi k - q) \cdot (1 - q)}{(\xi k - q)^2(1 - q)^2} S(l_\perp) \right]
\]

Here and in the following we study the multiplicity which is related to the cross section by an integral over the impact parameter:

\[
\frac{d\sigma_{pA \rightarrow hX}}{d^2p \, dy_h} = \int d^2b \frac{dN_{pA \rightarrow hX}}{d^2p \, dy_h}
\]

and we have defined \(S(k_\perp) \) such that \(F(k_\perp) = \int \frac{d^2b}{(2\pi)^2} S(k_\perp) \)
After summing the real and virtual contributions, two types of divergences remain in the NLO cross section:

- **The collinear divergence**
 - Occurs when the additional gluon is collinear to either the incoming or outgoing quark
 - Affects only the NLO corrections proportional to C_F

- **The rapidity divergence**
 - Occurs when $\xi \to 1 \Leftrightarrow$ the rapidity of the unobserved gluon $\to -\infty$
 \Leftrightarrow this gluon is collinear to the target
 - Affects only the NLO corrections proportional to N_c
For the collinear divergence we follow the same treatment as Chirilli, Xiao, Yuan: Using dimensional regularization in $4 - 2\epsilon$ dimensions: $\int \frac{d^2 q}{(2\pi)^2} \rightarrow \mu^{2\epsilon} \int \frac{d^2 - 2\epsilon q}{(2\pi)^2 - 2\epsilon}$, the divergent part of the real C_F term reads

$$-\frac{1}{\hat{\epsilon}} \frac{\alpha_s}{2\pi} C_F \int \frac{dz}{z^2} D_{h/q}(z) \int_{\tau/z}^1 d\xi \frac{1 + \xi^2}{1 - \xi} \frac{x_p}{\xi} q \left(\frac{x_p}{\xi} \right) \left[F(k_{\perp}) + \frac{1}{\xi^2} F \left(\frac{k_{\perp}}{\xi} \right) \right]$$

And the divergent part of the virtual C_F term is

$$\frac{1}{\hat{\epsilon}} \frac{\alpha_s}{\pi} C_F \int \frac{dz}{z^2} D_{h/q}(z) x_p q(x_p) \int_0^1 d\xi \frac{1 + \xi^2}{1 - \xi} F(k_{\perp})$$

where $\frac{1}{\hat{\epsilon}} = \frac{1}{\epsilon} - \gamma_E + \ln 4\pi$.

These divergences can be factorized into the DGLAP evolution of the quark PDF $q(x)$ and the fragmentation function $D_{h/q}(z)$ in the MS scheme:

$$q(x, \mu) = q^{(0)}(x) - \frac{1}{\hat{\epsilon}} \frac{\alpha_s(\mu)}{2\pi} \int_x^1 \frac{d\xi}{\xi} P_{qq}(\xi) q \left(\frac{x}{\xi} \right)$$

$$D_{h/q}(z, \mu) = D_{h/q}^{(0)}(z) - \frac{1}{\hat{\epsilon}} \frac{\alpha_s(\mu)}{2\pi} \int_z^1 \frac{d\xi}{\xi} P_{qq}(\xi) D_{h/q} \left(\frac{z}{\xi} \right)$$
The rapidity divergence

The N_c part of the NLO corrections is divergent when $\xi \to 1$
This corresponds to a gluon which is almost collinear to the target
Therefore it is natural to absorb this contribution in the gluon field of the target

Chirilli, Xiao, Yuan: define the renormalized gluon distribution of the target as

$$S(k_\perp) = S^{(0)}(k_\perp) + 2\alpha_s N_c \int_0^1 \frac{d\xi}{1 - \xi} [J(k_\perp, 1) - J_v(k_\perp, 1)]$$

In position space this can be written as

$$S(x - y) = S^{(0)}(x - y) - \frac{\alpha_s N_c}{2\pi^2} \int_0^1 \frac{d\xi}{1 - \xi} \int d^2z \frac{(x - y)^2}{(x - z)^2(y - z)^2} [S(x - y) - S(x - z)S(z - y)]$$

or, if we differentiate with respect to Y,

$$\frac{\partial}{\partial Y} S(x - y) = -\frac{\alpha_s N_c}{2\pi^2} \int d^2z \frac{(x - y)^2}{(x - z)^2(y - z)^2} [S(x - y) - S(x - z)S(z - y)]$$

Which is the well-known Balitsky-Kovchegov evolution equation for S
The subtracted cross section

After the divergences have been subtracted, the multiplicity is finite...

...but negative above some p_\perp. This is similar to the results obtained when including all the channels (Stasto, Xiao, Zaslavsky)

At large p_\perp the C_F term is positive \rightarrow the negativity comes from the N_c term
The origin of the negativity

The fact that the N_c term is negative at large p_\perp can be understood by looking at its large-k_\perp limit:

$$
\frac{N_c}{2} \frac{\alpha_s}{2\pi^2} \int \frac{dz}{z^2} D_{h/q}(z) \int_{1/z}^{1} \frac{d\xi}{(1-\xi)} K(\xi), \quad K(\xi) = (1+\xi^2) \frac{x_p}{\xi} q \left(\frac{x_p}{\xi} \right) J(k_\perp, \xi)
$$

At large k_\perp, $K(\xi)$ behaves like $K(\xi) \approx (1+\xi^2) \frac{x_p}{\xi} q \left(\frac{x_p}{\xi} \right) \frac{2\xi}{k_\perp^4} \frac{d^2q}{(2\pi)^2} q^2 S(q_\perp)$, which is positive and generally increasing with ξ. Therefore the plus-distribution will lead to a negative contribution.

This plus-distribution comes from the subtraction of the rapidity divergence

Let us come back to the renormalized UGD as defined by Chirilli, Xiao, Yuan:

$$
S(k_\perp) = S^{(0)}(k_\perp) + 2\alpha_s N_c \int_0^1 \frac{d\xi}{1-\xi} [J(k_\perp, 1) - J_v(k_\perp, 1)]
$$

The rapidity divergence occurs at $\xi = 1$ so this point should be included in the subtraction term. But the choice of the lower limit is rather arbitrary.
The rapidity divergence subtraction

More generally one could use

\[S(k_\perp) = S^{(0)}(k_\perp) + 2\alpha_s N_c \int_{\xi_f}^{1} \frac{d\xi}{1 - \xi} \left[J(k_\perp, 1) - J_v(k_\perp, 1) \right] \]

where we have introduced \(\xi_f \in [0 : 1] \) which plays the role of a (rapidity) factorization scale, arbitrary at this stage. It determines how much of the finite contribution is considered to be part of the evolution of the target.

At large \(k_\perp \) the \(N_c \) term now reads

\[
\frac{N_c}{2} \frac{\alpha_s}{2\pi^2} \int \frac{dz}{z^2} D_{h/q}(z) \left(\int_{\tau/z}^{\xi_f} \frac{d\xi}{1 - \xi} \mathcal{K}(\xi) + \int_{\xi_f}^{1} \frac{d\xi}{1 - \xi} \left[\mathcal{K}(\xi) - \mathcal{K}(1) \right] \right).
\]

Since \(\mathcal{K}(\xi) \) is positive and increases with \(\xi \), the first term yields a positive contribution while the second one yields a negative contribution.

If we increase \(\xi_f \), we make the positive contribution larger and the negative contribution smaller → increase of the cross section.

Like for other arbitrary scales, physical quantities should not depend on \(\xi_f \).
Dependence of the cross section on ξ_f

Multiplicity for several values of ξ_f between 0 and 1:

![Graph showing the dependence of the cross section on ξ_f]

As expected, larger values of ξ_f lead to positive cross sections up to larger p_\perp

The results depend strongly on the choice of ξ_f

Here we have varied ξ_f in a very wide range. We need to fix it to a “physical” value and then vary it in a reasonable range to estimate the remaining uncertainty.
How to choose the value of ξ_f

We need a condition to specify which contributions will be part of the evolution of the target. Let us consider a typical NLO diagram:

$$
\begin{array}{c}
\text{q} \\
\text{q} - 1, \xi
\end{array}
$$

The light cone energy introduced from the gluon emission is

$$
\Delta k^- = \frac{1}{2 x_P P^+} \left[\frac{l^2}{1 - \xi} + \frac{(q - l)^2}{\xi} - q^2 \right] = \frac{x_g^{\text{LO}} P^-}{k^2} \frac{(1 - (1 - \xi)q)^2}{\xi(1 - \xi)}
$$

Here we decide to absorb fluctuations with Δk^- larger than a certain factorization scale x_f in the evolution of the target. At large k_\perp this leads to

$$
\Delta k^- \approx \frac{x_g^{\text{LO}} P^-}{k^2} \frac{Q_s^2}{1 - \xi} \geq x_f P^- \iff 1 - \xi \leq \frac{Q_s^2}{k^2} \frac{x_g^{\text{LO}}}{x_f} \Rightarrow \xi_f = 1 - \frac{Q_s^2}{k^2} \frac{x_g^{\text{LO}}}{x_f},
$$

with a “natural” value $x_f \sim x_g^{\text{LO}}$. In practice we use $\xi_f = \frac{k_\perp^2}{k_\perp^2 + \frac{x_g}{x_f} Q_s^2}$, which has the same large k_\perp behaviour and goes smoothly to $\xi_f = 0$ at $k_\perp = 0$.
Results with a k_\perp-dependent ξ_f

Multiplicity for $\frac{x_f}{x_g} \in \{1, \frac{1}{2}, 2\}$:

At small p_\perp the dependence of the cross section on $\frac{x_f}{x_g}$ is rather small.

Values of $\frac{x_f}{x_g}$ in $[\frac{1}{2} : 2]$ still lead to negative cross sections at large p_\perp.

However the p_\perp value where this occurs depends strongly on this ratio.

In particular a value of $\frac{x_f}{x_g} = 2$ extends significantly the range of positivity.
Future improvements

These results may not seem very promising but they were obtained in a very simplistic approach.

Future directions that may lead to improvements:

- **Implement the light cone ordering condition in an exact way** in the transverse momentum integrals. For now we have used the external transverse scales k_\perp and Q_s, which allows us to reuse many results of Chirilli, Xiao, Yuan

- **Use a more physical dipole cross section**
 The GBW model leads to simple analytical expressions. However in this model the NLO cross section is completely governed by the NLO corrections ($\sim k_\perp^{-4}$) at large p_\perp. A dipole cross section obtained by solving the Balitsky-Kovchegov equation should lead to a power-law behaviour of the LO contribution at large p_\perp and so less sensitivity to the NLO corrections
We proposed to modify the subtraction procedure of the rapidity divergence to solve the issue of large negative NLO corrections at large p_\perp in this process

- We introduced a rapidity factorization scale ξ_f
 - The NLO cross section at large p_\perp is very sensitive to the choice of ξ_f
 - By increasing ξ_f it is possible to make the cross section positive up to arbitrarily large values of p_\perp

- We proposed to fix ξ_f by imposing light cone ordering
 - The cross section still becomes negative at some p_\perp when ξ_f is varied in its “natural” range
 - The p_\perp value at which this occurs changes a lot in this “natural” range

Directions for future work:

- Implement the light cone ordering condition in an exact way
- Use more physical dipole cross sections

These steps are necessary before drawing definitive conclusions on this approach