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Our goal is to study QCD in the saturation regime
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The production of forward particles is a crucial tool to probe small x values
Saturation effects should be enhanced by the higher densities in pA collisions

Here we study the inclusive production of a forward hadron in proton-nucleus
collisions: pA — hX
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Single inclusive forward hadron production at LO in the ¢ — ¢ channel:
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The values of x, and x4 probed in the projectile and the target are given by
T, = BLeY, g, = BLe7Y

P= 56 =
The dilute projectile is described in terms of well known collinear PDFs

The dense target is described by an unintegrated gluon distribution F, which is
the Fourier-transform of the fundamental representation dipole correlator:

Flly) = / d(;‘:)zye*im"*”S(x,y), S(x,y) = <Ni TrU(x)U*(y)>

1
The LO cross section reads di}%y = Z/ %qu(zp)f(kL)Dh/q(Z) ,
—~ /-

where Dy, ), (z) are the fragmentation functions
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Motivations

Several LO calculations achieved a quite good description of experimental data,
but often with rather large K factors to get the correct normalization

p+p—m/hT + X, /5 =200GeV, K =2.5
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It is important to extend these calculations to higher orders to check the
stability of the perturbative expansion and to have more accurate predictions
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The expression for the NLO cross section has been computed by Chirilli, Xiao, Yuan

Example of real ¢ — ¢ contribution:

P o, P+ K

> % pL=7zki,y
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Example of virtual ¢ — ¢ contribution:

pt 2, P+ Kt
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‘/L‘!]P7+k'J_ k;
P
Kt
1 —¢& = —%= is the momentum fraction of the incoming quark carried by the gluon
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First numerical implementation of the NLO cross section: Stasto, Xiao, Zaslavsky
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The cross section becomes negative above some transverse momentum
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Several proposals to solve this issue, for example the kinematical constraint/loffe
time cutoff (Altinoluk, Armesto, Beuf, Kovner, Lublinsky). Numerical implementation:
Watanabe, Xiao, Yuan, Zaslavsky:
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The negativity problem is less severe but still present in some cases
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The purpose of this work:

o ldentify the origin of the negativity at large transverse momentum
@ See if we can find a way to cure it
For this we make some simplifications

o We consider only the ¢ — ¢ channel

@ We use a simple gaussian form for the dipole cross section

r2Q2
Golec-Biernat and Wiisthoff (GBW) model: S(r) =e™

4

Our goal is not (yet) to make predictions to compare to experimental data
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The NLO cross section

The expression for the multiplicity at NLO reads
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Here and in the following we study the multiplicity which is related to the cross
dapA*)hX 5 deAﬁhX
d’pdy, / d’pdy;

2
and we have defined S(k ) such that F(k,) = /(;—bS(m)

)2

section by an integral over the impact parameter:
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Divergences

After summing the real and virtual contributions, two types of divergences
remain in the NLO cross section:

@ The collinear divergence
- Occurs when the additional gluon is collinear to either the
incoming or outgoing quark
- Affects only the NLO corrections proportional to Cr

@ The rapidity divergence
- Occurs when £ — 1 < the rapidity of the unobserved gluon — —oco
< this gluon is collinear to the target
- Affects only the NLO corrections proportional to N

Pt pt 17
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P
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The collinear divergence

For the collinear divergence we follow the same treatment as Chirilli, Xiao, Yuan:
. . . . . . . . 2 2—2e
Using dimensional regularization in 4 — 2¢ dimensions: f(;T‘)‘Q — ,u%f(gﬁ)ﬁ,

the divergent part of the real Cr term reads

1as dz ! 1+ T
0 [ Goue [ s () [ g7 ()

And the divergent part of the virtual Cr term is
1a, dz 14 &
7Q—CF/ =5 Dhyq(2)2pq (zp / d{ +£ F(ki)

where 1 = ; —vE + Indnr.

These divergences can be factorized into the DGLAP evolution of the quark
PDF g(z) and the fragmentation function D}, /,(2) in the MS scheme:
1 as ld
o) = (@) — 222 f%(é) (%)

é 2m J, &

1 as
Do) = 0,2~ 125 [ L 9y, (2)
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The rapidity divergence

The N. part of the NLO corrections is divergent when £ — 1
This corresponds to a gluon which is almost collinear to the target
Therefore it is natural to absorb this contribution in the gluon field of the target

Chirilli, Xiao, Yuan: define the renormalized gluon distribution of the target as
S(ky) = 8 (kL) + 2asNe / J(ln, ) = Jo(ky,1)]
In position space this can be written as

s<x7y>:s<°><xfy>f“5N° . /d2 =Y (S(x—y)—S(x—2)S@—y)]

272 (x —2z) z)

or, if we differentiate with respect to Y,
i _ _ ach 2 (X 7 y)2
oY See-y) = 272 dz (x —2z)*(y — 2)?

Which is the well-known Balitsky-Kovchegov evolution equation for S

[S(x—y) = S(x—2)S(z-y)]
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The subtracted cross section

After the divergences have been subtracted, the multiplicity is finite...
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...but negative above some p, . This is similar to the results obtained when
including all the channels (Stasto, Xiao, Zaslavsky)

At large p1 the CF term is positive — the negativity comes from the N¢ term
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The origin of the negativity

The fact that the N term is negative at large p1 can be understood by
looking at its large-k limit:

Ne as [ dz % de
Sam | G0 [T g ke

2
At large k1, K(¢) behaves like K(¢) ~ (1+f2)%q (%P) %/ (;W‘;‘zq%(qg ,
which is positive and generally increasing with &.

Tp
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Therefore the plus-distribution will lead to a negative contribution.

This plus-distribution comes from the subtraction of the rapidity divergence

Let us come back to the renormalized UGD as defined by Chirilli, Xiao, Yuan:
$(e2) = 8Ok + 20N [ (5190 1) = (k)

The rapidity divergence occurs at £ = 1 so this point should be included in the
subtraction term. But the choice of the lower limit is rather arbitrary
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The rapidity divergence subtraction

More generally one could use

1
Sku) =S (k) + 20N [ 1% 1Tk, 1) = oo, 1)
&

where we have introduced & € [0 : 1] which plays the role of a (rapidity)
factorization scale, arbitrary at this stage. It determines how much of the finite
contribution is considered to be part of the evolution of the target

At large k1 the Nc term now reads

£ 1

&

Since K(¢) is positive and increases with &, the first term yields a positive
contribution while the second one yields a negative contribution

If we increase &, we make the positive contribution larger and the negative
contribution smaller — increase of the cross section

Like for other arbitrary scales, physical quantities should not depend on &
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Dependence of the cross section on &

Multiplicity for several values of & between 0 and 1:
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As expected, larger values of & lead to positive cross sections up to larger p.
The results depend strongly on the choice of &

Here we have varied & in a very wide range. We need to fix it to a “physical”
value and then vary it in a reasonable range to estimate the remaining
uncertainty
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How to choose the value of &

We need a condition to specify which contributions will be part of the evolution
of the target. Let us consider a typical NLO diagram:

q qa-1¢
% L1-¢
The light cone energy introduced from the gluon emission is

1 [ B (@-1)? ,] alPPT (- (1-¢)q)?
‘2sz+{175+ € ’q}‘ K g(i-¢)

Here we decide to absorb fluctuations with Ak~ larger than a certain
factorization scale z¢ in the evolution of the target. At large k, this leads to

Ak

LO p— 2 2 ,.LO 2 ..LO
_ oz P Q _ Qi T QT
Ak~ ~ =2 S >pPT e 1-6< = o =1 220
k2 1-¢~ f €< k2 a¢ & k2 xf
. " ” Lo . k%
with a “natural” value x¢ ~ x,~. In practice we use & = ——t5— ,
K +E-02

g
which has the same large k£, behaviour and goes smoothly to & =0at ky =0
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Results with a k| -dependent &
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At small p, the dependence of the cross section on =t is rather small
g
Values of = in [1 : 2] still lead to negative cross sections at large p.
g

However the p, value where this occurs depends strongly on this ratio

- "1)" _ . . p P
In particular a value of = 2 extends significantly the range of positivity
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Future improvements

These results may not seem very promising but they were obtained in a very
simplistic approach.

Future directions that may lead to improvements:

o Implement the light cone ordering condition in an exact way in the transverse
momentum integrals. For now we have used the external transverse scales k.
and Qs, which allows us to reuse many results of Chirilli, Xiao, Yuan

@ Use a more physical dipole cross section
The GBW model leads to simple analytical expressions. However in this model
the NLO cross section is completely governed by the NLO corrections (~ k%)
at large p1. A dipole cross section obtained by solving the Balitsky-Kovchegov
equation should lead to a power-law behaviour of the LO contribution at large
p1 and so less sensitivity to the NLO corrections
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Conclusions

We proposed to modify the subtraction procedure of the rapidity divergence to
solve the issue of large negative NLO corrections at large p1 in this process

@ We introduced a rapidity factorization scale &
- The NLO cross section at large p is very sensitive to the choice of &
- By increasing & it is possible to make the cross section positive up to
arbitrarily large values of p

@ We proposed to fix & by imposing light cone ordering
- The cross section still becomes negative at some p; when & is varied
in its “natural” range
- The p1 value at which this occurs changes a lot in this “natural” range
Directions for future work:
o Implement the light cone ordering condition in an exact way
@ Use more physical dipole cross sections

These steps are necessary before drawing definitive conclusions on this approach
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