Single inclusive forward hadron production at NLO

Bertrand Ducloué

(University of Jyväskylä)

Initial Stages 2016

Lisbon, 24/05/2016

B. D., T. Lappi, Y. Zhu, arXiv:1604.00225 [hep-ph]

Our goal is to study QCD in the saturation regime

The production of forward particles is a crucial tool to probe small x values Saturation effects should be enhanced by the higher densities in pA collisions Here we study the inclusive production of a forward hadron in proton-nucleus collisions: $pA \to hX$

Motivations

Single inclusive forward hadron production at LO in the $q \rightarrow q$ channel:

The values of x_p and x_g probed in the projectile and the target are given by $x_p = \frac{p_\perp}{\sqrt{s}} e^y$, $x_g = \frac{p_\perp}{\sqrt{s}} e^{-y}$

The dilute projectile is described in terms of well known collinear PDFs

The dense target is described by an unintegrated gluon distribution \mathcal{F} , which is the Fourier-transform of the fundamental representation dipole correlator:

$$\mathcal{F}(k_\perp) = \int \frac{\mathrm{d}^2\mathbf{x}\mathrm{d}^2\mathbf{y}}{(2\pi)^2} e^{-ik_\perp\cdot(\mathbf{x}-\mathbf{y})} S(\mathbf{x},\mathbf{y}) \;, \quad S(\mathbf{x},\mathbf{y}) = \left\langle \frac{1}{N_\mathrm{c}} \operatorname{Tr} U(\mathbf{x}) U^\dagger(\mathbf{y}) \right\rangle$$

The LO cross section reads $\frac{\mathrm{d}\sigma}{\mathrm{d}^2\mathbf{p}\mathrm{d}y} = \sum_q \int_{\tau}^1 \frac{\mathrm{d}z}{z^2} x_p q(x_p) \mathcal{F}(k_\perp) D_{h/q}(z)$,

where $D_{h/q}(z)$ are the fragmentation functions

Several LO calculations achieved a quite good description of experimental data, but often with rather large K factors to get the correct normalization

It is important to extend these calculations to higher orders to check the stability of the perturbative expansion and to have more accurate predictions

Motivations

The expression for the NLO cross section has been computed by Chirilli, Xiao, Yuan

Example of real $q \rightarrow q$ contribution:

Example of virtual $q \rightarrow q$ contribution:

 $1-\xi=rac{k_g^+}{x_pP^+}$ is the momentum fraction of the incoming quark carried by the gluon

First numerical implementation of the NLO cross section: Stasto, Xiao, Zaslavsky

The cross section becomes negative above some transverse momentum

Motivations

Several proposals to solve this issue, for example the kinematical constraint/loffe time cutoff (Altinoluk, Armesto, Beuf, Kovner, Lublinsky). Numerical implementation: Watanabe, Xiao, Yuan, Zaslavsky:

The negativity problem is less severe but still present in some cases

The purpose of this work:

- Identify the origin of the negativity at large transverse momentum
- See if we can find a way to cure it

For this we make some simplifications

- We consider only the $q \rightarrow q$ channel
- We use a simple gaussian form for the dipole cross section Golec-Biernat and Wüsthoff (GBW) model: $S({\bf r})=e^{-{{{\bf r}^2}Q_{\bf s}^2\over 4}}$

Our goal is not (yet) to make predictions to compare to experimental data

The NLO cross section

The expression for the multiplicity at NLO reads

$$\begin{split} \frac{\mathrm{d}N^{pA \to hX}}{\mathrm{d}^2\mathbf{p}\,\mathrm{d}y_h} &= \int_{\tau}^1 \frac{\mathrm{d}z}{z^2} D_{h/q}(z) x_p q(x_p) \frac{\mathcal{S}^{(0)}(k_\perp)}{(2\pi)^2} &\leftarrow \text{LO term} \\ &+ \frac{\alpha_s}{2\pi^2} \int \frac{\mathrm{d}z}{z^2} D_{h/q}(z) \int_{\tau/z}^1 \mathrm{d}\xi \frac{1+\xi^2}{1-\xi} \frac{x_p}{\xi} q\left(\frac{x_p}{\xi}\right) \left\{ \frac{C_{\mathrm{F}}\mathcal{I}(k_\perp,\xi) + \frac{N_{\mathrm{c}}}{2} \mathcal{J}(k_\perp,\xi)}{2} \mathcal{J}(k_\perp,\xi) \right\} &\leftarrow \text{real NLO term} \\ &- \frac{\alpha_s}{2\pi^2} \int \frac{\mathrm{d}z}{z^2} D_{h/q}(z) \int_0^1 \mathrm{d}\xi \frac{1+\xi^2}{1-\xi} x_p q\left(x_p\right) \left\{ \frac{C_{\mathrm{F}}\mathcal{I}_v(k_\perp,\xi) + \frac{N_{\mathrm{c}}}{2} \mathcal{J}_v(k_\perp,\xi)}{2} \mathcal{J}_v(k_\perp,\xi) \right\} &\leftarrow \text{virtual NLO term} \end{split}$$

with

$$\begin{split} &\mathcal{I}(k_\perp,\xi) = \int \frac{\mathrm{d}^2\mathbf{q}}{(2\pi)^2} \mathcal{S}(q_\perp) \left[\frac{\mathbf{k} - \mathbf{q}}{(\mathbf{k} - \mathbf{q})^2} - \frac{\mathbf{k} - \xi \mathbf{q}}{(\mathbf{k} - \xi \mathbf{q})^2} \right]^2 \\ &\mathcal{J}(k_\perp,\xi) = \int \frac{\mathrm{d}^2\mathbf{q}}{(2\pi)^2} \frac{2(\mathbf{k} - \xi \mathbf{q}) \cdot (\mathbf{k} - \mathbf{q})}{(\mathbf{k} - \xi \mathbf{q})^2(\mathbf{k} - \mathbf{q})^2} \mathcal{S}(q_\perp) - \int \frac{\mathrm{d}^2\mathbf{q}}{(2\pi)^2} \frac{\mathrm{d}^2\mathbf{l}}{(\mathbf{k} - \xi \mathbf{q})^2(\mathbf{k} - \mathbf{l})^2} \mathcal{S}(q_\perp) \mathcal{S}(l_\perp) \\ &\mathcal{I}_v(k_\perp,\xi) = \mathcal{S}(k_\perp) \int \frac{\mathrm{d}^2\mathbf{q}}{(2\pi)^2} \left[\frac{\mathbf{k} - \mathbf{q}}{(\mathbf{k} - \mathbf{q})^2} - \frac{\xi \mathbf{k} - \mathbf{q}}{(\xi \mathbf{k} - \mathbf{q})^2} \right]^2 \\ &\mathcal{J}_v(k_\perp,\xi) = \mathcal{S}(k_\perp) \left[\int \frac{\mathrm{d}^2\mathbf{q}}{(2\pi)^2} \frac{2(\xi \mathbf{k} - \mathbf{q}) \cdot (\mathbf{k} - \mathbf{q})}{(\xi \mathbf{k} - \mathbf{q})^2(\mathbf{k} - \mathbf{q})^2} - \int \frac{\mathrm{d}^2\mathbf{q}}{(2\pi)^2} \frac{\mathrm{d}^2\mathbf{l}}{(2\pi)^2} \frac{2(\xi \mathbf{k} - \mathbf{q}) \cdot (\mathbf{l} - \mathbf{q})}{(\xi \mathbf{k} - \mathbf{q})^2(\mathbf{l} - \mathbf{q})^2} \mathcal{S}(l_\perp) \right] \end{split}$$

Here and in the following we study the multiplicity which is related to the cross section by an integral over the impact parameter: $\frac{\mathrm{d}\sigma^{pA\to hX}}{\mathrm{d}^2\mathbf{p}\,\mathrm{d}y_h} = \int \mathrm{d}^2\mathbf{b}\frac{\mathrm{d}N^{pA\to hX}}{\mathrm{d}^2\mathbf{p}\,\mathrm{d}y_h}$ and we have defined $\mathcal{S}(k_\perp)$ such that $\mathcal{F}(k_\perp) = \int \frac{\mathrm{d}^2\mathbf{b}}{(2\pi)^2}\mathcal{S}(k_\perp)$

Divergences

After summing the real and virtual contributions, two types of divergences remain in the NLO cross section:

- The collinear divergence
 - Occurs when the additional gluon is collinear to either the incoming or outgoing quark
 - Affects only the NLO corrections proportional to C_{F}
- The rapidity divergence
 - Occurs when $\xi \to 1 \Leftrightarrow$ the rapidity of the unobserved gluon $\to -\infty$ \Leftrightarrow this gluon is collinear to the target
 - Affects only the NLO corrections proportional to $N_{
 m c}$

For the collinear divergence we follow the same treatment as Chirilli, Xiao, Yuan: Using dimensional regularization in $4-2\epsilon$ dimensions: $\int \frac{\mathrm{d}^2\mathbf{q}}{(2\pi)^2} \to \mu^{2\epsilon} \int \frac{\mathrm{d}^{2-2\epsilon}\mathbf{q}}{(2\pi)^{2-2\epsilon}},$ the divergent part of the real C_{F} term reads

$$-\frac{1}{\hat{\epsilon}}\frac{\alpha_s}{2\pi}C_{\rm F}\int\frac{{\rm d}z}{z^2}D_{h/q}(z)\int_{\tau/z}^1{\rm d}\xi\frac{1+\xi^2}{1-\xi}\frac{x_p}{\xi}q\left(\frac{x_p}{\xi}\right)\left[\mathcal{F}(k_\perp)+\frac{1}{\xi^2}\mathcal{F}\left(\frac{k_\perp}{\xi}\right)\right]$$

And the divergent part of the virtual C_{F} term is

$$\begin{split} &\frac{1}{\hat{\epsilon}}\frac{\alpha_s}{\pi}C_{\mathrm{F}}\int\frac{\mathrm{d}z}{z^2}D_{h/q}(z)x_pq\left(x_p\right)\int_0^1\mathrm{d}\xi\frac{1+\xi^2}{1-\xi}\mathcal{F}(k_\perp)\\ &\text{where }\ \tfrac{1}{z}=\tfrac{1}{z}-\gamma_E+\ln4\pi. \end{split}$$

These divergences can be factorized into the DGLAP evolution of the quark PDF q(x) and the fragmentation function $D_{h/q}(z)$ in the $\overline{\rm MS}$ scheme:

$$q(x,\mu) = q^{(0)}(x) - \frac{1}{\hat{\epsilon}} \frac{\alpha_s(\mu)}{2\pi} \int_x^1 \frac{d\xi}{\xi} \mathcal{P}_{qq}(\xi) q\left(\frac{x}{\xi}\right)$$
$$D_{h/q}(z,\mu) = D_{h/q}^{(0)}(z) - \frac{1}{\hat{\epsilon}} \frac{\alpha_s(\mu)}{2\pi} \int_z^1 \frac{d\xi}{\xi} \mathcal{P}_{qq}(\xi) D_{h/q}\left(\frac{z}{\xi}\right)$$

The rapidity divergence

The $N_{
m c}$ part of the NLO corrections is divergent when $\xi
ightarrow 1$

This corresponds to a gluon which is almost collinear to the target

Therefore it is natural to absorb this contribution in the gluon field of the target

Chirilli, Xiao, Yuan: define the renormalized gluon distribution of the target as

$$\mathcal{S}(k_\perp) = \mathcal{S}^{(0)}(k_\perp) + 2\alpha_s N_\mathrm{c} \int_0^1 \frac{\mathrm{d}\xi}{1-\xi} \left[\mathcal{J}(k_\perp,1) - \mathcal{J}_v(k_\perp,1) \right]$$

In position space this can be written as

$$S(\mathbf{x}-\mathbf{y}) = S^{(0)}(\mathbf{x}-\mathbf{y}) - \frac{\alpha_s N_c}{2\pi^2} \int_0^1 \frac{\mathrm{d}\xi}{1-\xi} \int \!\! \mathrm{d}^2\mathbf{z} \frac{(\mathbf{x}-\mathbf{y})^2}{(\mathbf{x}-\mathbf{z})^2 (\mathbf{y}-\mathbf{z})^2} \left[S(\mathbf{x}-\mathbf{y}) - S(\mathbf{x}-\mathbf{z}) S(\mathbf{z}-\mathbf{y}) \right]$$

or, if we differentiate with respect to Y,

$$\frac{\partial}{\partial Y}S(\mathbf{x} - \mathbf{y}) = -\frac{\alpha_s N_c}{2\pi^2} \int d^2\mathbf{z} \frac{(\mathbf{x} - \mathbf{y})^2}{(\mathbf{x} - \mathbf{z})^2(\mathbf{y} - \mathbf{z})^2} \left[S(\mathbf{x} - \mathbf{y}) - S(\mathbf{x} - \mathbf{z})S(\mathbf{z} - \mathbf{y}) \right]$$

Which is the well-known Balitsky-Kovchegov evolution equation for S

The subtracted cross section

After the divergences have been subtracted, the multiplicity is finite...

...but negative above some p_{\perp} . This is similar to the results obtained when including all the channels (Stasto, Xiao, Zaslavsky)

At large p_{\perp} the $C_{\sf F}$ term is positive ightarrow the negativity comes from the $N_{\sf c}$ term

The fact that the $N_{\rm c}$ term is negative at large p_{\perp} can be understood by looking at its large- k_{\perp} limit:

$$\frac{N_{\rm c}}{2}\frac{\alpha_s}{2\pi^2}\int\frac{{\rm d}z}{z^2}D_{h/q}(z)\int_{\tau/z}^{\xi_{\rm f}}\frac{{\rm d}\xi}{(1-\xi)_+}\mathcal{K}(\xi)\;,\quad \mathcal{K}(\xi)=(1+\xi^2)\frac{x_p}{\xi}q\left(\frac{x_p}{\xi}\right)\mathcal{J}(k_\perp,\xi)$$

At large k_{\perp} , $\mathcal{K}(\xi)$ behaves like $\mathcal{K}(\xi) \approx (1+\xi^2) \frac{x_p}{\xi} q\left(\frac{x_p}{\xi}\right) \frac{2\xi}{k_{\perp}^4} \int \frac{\mathsf{d}^2\mathbf{q}}{(2\pi)^2} \mathbf{q}^2 \mathcal{S}(q_{\perp})$, which is positive and generally increasing with ξ .

Therefore the plus-distribution will lead to a negative contribution.

This plus-distribution comes from the subtraction of the rapidity divergence

Let us come back to the renormalized UGD as defined by Chirilli, Xiao, Yuan:

$$\mathcal{S}(k_{\perp}) = \mathcal{S}^{(0)}(k_{\perp}) + 2\alpha_s N_c \int_0^1 \frac{\mathsf{d}\xi}{1-\xi} \left[\mathcal{J}(k_{\perp},1) - \mathcal{J}_v(k_{\perp},1) \right]$$

The rapidity divergence occurs at $\xi=1$ so this point should be included in the subtraction term. But the choice of the lower limit is rather arbitrary

The rapidity divergence subtraction

More generally one could use

$$\mathcal{S}(k_\perp) = \mathcal{S}^{(0)}(k_\perp) + 2\alpha_s N_{\rm c} \int_{\xi_{\rm c}}^1 \frac{{\rm d}\xi}{1-\xi} \left[\mathcal{J}(k_\perp,1) - \mathcal{J}_v(k_\perp,1) \right] \label{eq:scale}$$

where we have introduced $\xi_{\rm f} \in [0:1[$ which plays the role of a (rapidity) factorization scale, arbitrary at this stage. It determines how much of the finite contribution is considered to be part of the evolution of the target

At large k_{\perp} the $N_{
m c}$ term now reads

$$\frac{N_{\rm c}}{2}\frac{\alpha_s}{2\pi^2}\int\frac{{\rm d}z}{z^2}D_{h/q}(z)\left(\int_{\tau/z}^{\xi_{\rm f}}\frac{{\rm d}\xi}{1-\xi}\mathcal{K}(\xi)+\int_{\xi_{\rm f}}^1\frac{{\rm d}\xi}{1-\xi}\left[\mathcal{K}(\xi)-\mathcal{K}(1)\right]\right)\,.$$

Since $K(\xi)$ is positive and increases with ξ , the first term yields a positive contribution while the second one yields a negative contribution

If we increase ξ_f , we make the positive contribution larger and the negative contribution smaller \rightarrow increase of the cross section

Like for other arbitrary scales, physical quantities should not depend on ξ_{f}

Dependence of the cross section on $\xi_{\rm f}$

Multiplicity for several values of ξ_f between 0 and 1:

As expected, larger values of ξ_{f} lead to positive cross sections up to larger p_{\perp}

The results depend strongly on the choice of ξ_{f}

Here we have varied $\xi_{\rm f}$ in a very wide range. We need to fix it to a "physical" value and then vary it in a reasonable range to estimate the remaining uncertainty

How to choose the value of $\xi_{\rm f}$

We need a condition to specify which contributions will be part of the evolution of the target. Let us consider a typical NLO diagram:

$$\mathbf{q} \xrightarrow{\qquad \qquad } \mathbf{q} - \mathbf{l}, \xi$$

The light cone energy introduced from the gluon emission is

$$\Delta k^- = \frac{1}{2x_p P^+} \left[\frac{\mathbf{l}^2}{1-\xi} + \frac{(\mathbf{q} - \mathbf{l})^2}{\xi} - \mathbf{q}^2 \right] = \frac{x_g^{\mathsf{LO}} P^-}{\mathbf{k}^2} \frac{(\mathbf{l} - (1-\xi)\mathbf{q})^2}{\xi(1-\xi)}$$

Here we decide to absorb fluctuations with Δk^- larger than a certain factorization scale $x_{\rm f}$ in the evolution of the target. At large k_\perp this leads to

$$\Delta k^- \approx \frac{x_g^{\rm LO}P^-}{\mathbf{k}^2} \frac{Q_{\rm s}^2}{1-\xi} \geq x_{\rm f}P^- \ \Leftrightarrow \ 1-\xi \leq \frac{Q_{\rm s}^2}{\mathbf{k}^2} \frac{x_g^{\rm LO}}{x_{\rm f}} \ \Rightarrow \ \xi_{\rm f} = 1 - \frac{Q_{\rm s}^2}{\mathbf{k}^2} \frac{x_g^{\rm LO}}{x_{\rm f}} \ , \label{eq:delta-kappa}$$

with a "natural" value $x_{\rm f}\sim x_g^{\rm LO}$. In practice we use $\xi_{\rm f}=\frac{k_\perp^2}{k_\perp^2+\frac{x_{\rm f}^{\rm LO}}{x_\perp}Q_{\rm f}^2}$,

which has the same large k_\perp behaviour and goes smoothly to $\dot{\xi}_{\rm f}=0$ at $k_\perp=0$

Results with a k_{\perp} -dependent $\xi_{\rm f}$

Multiplicity for $\frac{x_{\mathbf{f}}}{x_g} \in \{1, \frac{1}{2}, 2\}$:

At small p_{\perp} the dependence of the cross section on $\frac{x_{\mathbf{f}}}{x_g}$ is rather small Values of $\frac{x_{\mathbf{f}}}{x_g}$ in $[\frac{1}{2}:2]$ still lead to negative cross sections at large p_{\perp} However the p_{\perp} value where this occurs depends strongly on this ratio In particular a value of $\frac{x_{\mathbf{f}}}{x_g}=2$ extends significantly the range of positivity

 p_{\perp} [GeV]

Future improvements

These results may not seem very promising but they were obtained in a very simplistic approach.

Future directions that may lead to improvements:

- Implement the light cone ordering condition in an exact way in the transverse momentum integrals. For now we have used the external transverse scales k_{\perp} and $Q_{\rm s}$, which allows us to reuse many results of Chirilli, Xiao, Yuan
- Use a more physical dipole cross section The GBW model leads to simple analytical expressions. However in this model the NLO cross section is completely governed by the NLO corrections ($\sim k_{\perp}^{-4}$) at large p_{\perp} . A dipole cross section obtained by solving the Balitsky-Kovchegov equation should lead to a power-law behaviour of the LO contribution at large p_{\perp} and so less sensitivity to the NLO corrections

Conclusions

We proposed to modify the subtraction procedure of the rapidity divergence to solve the issue of large negative NLO corrections at large p_{\perp} in this process

- ullet We introduced a rapidity factorization scale $\xi_{
 m f}$
 - The NLO cross section at large p_{\perp} is very sensitive to the choice of ξ_{f}
 - By increasing $\xi_{\rm f}$ it is possible to make the cross section positive up to arbitrarily large values of p_{\perp}
- We proposed to fix ξ_f by imposing light cone ordering
 - The cross section still becomes negative at some p_{\perp} when $\xi_{\rm f}$ is varied in its "natural" range
 - The p_{\perp} value at which this occurs changes a lot in this "natural" range

Directions for future work:

- Implement the light cone ordering condition in an exact way
- Use more physical dipole cross sections

These steps are necessary before drawing definitive conclusions on this approach