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Motivations

Our goal is to study QCD in the saturation regime
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The production of forward particles is a crucial tool to probe small x values

Saturation e�ects should be enhanced by the higher densities in pA collisions

Here we study the inclusive production of a forward hadron in proton-nucleus
collisions: pA→ hX
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Motivations

Single inclusive forward hadron production at LO in the q → q channel:

P+

P−

xpP
+

xgP
−+k⊥

p⊥ = zk⊥, yPDF FF

UGD

The values of xp and xg probed in the projectile and the target are given by
xp = p⊥√

s
ey, xg = p⊥√

s
e−y

The dilute projectile is described in terms of well known collinear PDFs

The dense target is described by an unintegrated gluon distribution F , which is
the Fourier-transform of the fundamental representation dipole correlator:

F(k⊥) =

∫
d2xd2y

(2π)2
e−ik⊥·(x−y)S(x,y) , S(x,y) =

〈
1

Nc

TrU(x)U†(y)

〉

The LO cross section reads
dσ

d2pdy
=
∑
q

∫ 1

τ

dz

z2
xpq(xp)F(k⊥)Dh/q(z) ,

where Dh/q(z) are the fragmentation functions
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Motivations

Several LO calculations achieved a quite good description of experimental data,
but often with rather large K factors to get the correct normalization
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It is important to extend these calculations to higher orders to check the
stability of the perturbative expansion and to have more accurate predictions
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Motivations

The expression for the NLO cross section has been computed by Chirilli, Xiao, Yuan

Example of real q → q contribution:
P+

P−

xpP
+

xgP
−+q⊥

p⊥ = zk⊥, y
kµq

kµg

Example of virtual q → q contribution:
P+

P−

xpP
+

xgP
−+k⊥

p⊥ = zk⊥, y
kµq

kµg

1− ξ =
k+g

xpP+ is the momentum fraction of the incoming quark carried by the gluon
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Motivations

First numerical implementation of the NLO cross section: Sta±to, Xiao, Zaslavsky
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The cross section becomes negative above some transverse momentum
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Motivations

Several proposals to solve this issue, for example the kinematical constraint/Io�e
time cuto� (Altinoluk, Armesto, Beuf, Kovner, Lublinsky). Numerical implementation:
Watanabe, Xiao, Yuan, Zaslavsky:
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The negativity problem is less severe but still present in some cases
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Motivations

The purpose of this work:

Identify the origin of the negativity at large transverse momentum

See if we can �nd a way to cure it

For this we make some simpli�cations

We consider only the q → q channel

We use a simple gaussian form for the dipole cross section

Golec-Biernat and Wüstho� (GBW) model: S(r) = e−
r2Q2

s
4

Our goal is not (yet) to make predictions to compare to experimental data
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The NLO cross section

The expression for the multiplicity at NLO reads

dNpA→hX

d2p dyh
=

∫ 1

τ

dz

z2
Dh/q(z)xpq(xp)

S(0)(k⊥)

(2π)2
← LO term

+
αs
2π2

∫
dz

z2
Dh/q(z)

∫ 1

τ/z

dξ
1 + ξ2

1− ξ
xp
ξ
q

(
xp
ξ

){
CFI(k⊥, ξ) +

Nc

2
J (k⊥, ξ)

}
← real NLO term

− αs
2π2

∫
dz

z2
Dh/q(z)

∫ 1

0

dξ
1 + ξ2

1− ξ xpq (xp)

{
CFIv(k⊥, ξ) +

Nc

2
Jv(k⊥, ξ)

}
← virtual NLO term

with

I(k⊥, ξ) =

∫
d2q

(2π)2
S(q⊥)

[
k− q

(k− q)2
− k− ξq

(k− ξq)2

]2
J (k⊥, ξ) =

∫
d2q

(2π)2
2(k− ξq) · (k− q)

(k− ξq)2(k− q)2
S(q⊥)−

∫
d2q

(2π)2
d2l

(2π)2
2(k− ξq) · (k− l)

(k− ξq)2(k− l)2
S(q⊥)S(l⊥)

Iv(k⊥, ξ) = S(k⊥)

∫
d2q

(2π)2

[
k− q

(k− q)2
− ξk− q

(ξk− q)2

]2
Jv(k⊥, ξ) = S(k⊥)

[∫
d2q

(2π)2
2(ξk− q) · (k− q)

(ξk− q)2(k− q)2
−
∫

d2q

(2π)2
d2l

(2π)2
2(ξk− q) · (l− q)

(ξk− q)2(l− q)2
S(l⊥)

]

Here and in the following we study the multiplicity which is related to the cross

section by an integral over the impact parameter:
dσpA→hX

d2p dyh
=

∫
d2b

dNpA→hX

d2p dyh

and we have de�ned S(k⊥) such that F(k⊥) =
∫

d2b

(2π)2
S(k⊥)
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Divergences

After summing the real and virtual contributions, two types of divergences
remain in the NLO cross section:

The collinear divergence
- Occurs when the additional gluon is collinear to either the
incoming or outgoing quark

- A�ects only the NLO corrections proportional to CF

The rapidity divergence
- Occurs when ξ → 1 ⇔ the rapidity of the unobserved gluon → −∞

⇔ this gluon is collinear to the target
- A�ects only the NLO corrections proportional to Nc

P+

P−

xpP
+

xgP
−+q⊥

p⊥ = zk⊥, y
kµq

k+g = (1− ξ)xpP+
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The collinear divergence

For the collinear divergence we follow the same treatment as Chirilli, Xiao, Yuan:

Using dimensional regularization in 4− 2ε dimensions:
∫

d
2q

(2π)2
→ µ2ε

∫
d
2−2εq

(2π)2−2ε ,

the divergent part of the real CF term reads

−1

ε̂

αs
2π
CF

∫
dz

z2
Dh/q(z)

∫ 1

τ/z

dξ
1 + ξ2

1− ξ
xp
ξ
q

(
xp
ξ

)[
F(k⊥) +

1

ξ2
F
(
k⊥
ξ

)]
And the divergent part of the virtual CF term is

1

ε̂

αs
π
CF

∫
dz

z2
Dh/q(z)xpq (xp)

∫ 1

0

dξ
1 + ξ2

1− ξ F(k⊥)

where 1
ε̂
= 1

ε
− γE + ln 4π.

These divergences can be factorized into the DGLAP evolution of the quark
PDF q(x) and the fragmentation function Dh/q(z) in the MS scheme:

q(x, µ) = q(0)(x)− 1

ε̂

αs(µ)

2π

∫ 1

x

dξ

ξ
Pqq(ξ)q

(
x

ξ

)
Dh/q(z, µ) = D

(0)

h/q(z)−
1

ε̂

αs(µ)

2π

∫ 1

z

dξ

ξ
Pqq(ξ)Dh/q

(
z

ξ

)
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The rapidity divergence

The Nc part of the NLO corrections is divergent when ξ → 1

This corresponds to a gluon which is almost collinear to the target

Therefore it is natural to absorb this contribution in the gluon �eld of the target

Chirilli, Xiao, Yuan: de�ne the renormalized gluon distribution of the target as

S(k⊥) = S(0)(k⊥) + 2αsNc

∫ 1

0

dξ

1− ξ [J (k⊥, 1)− Jv(k⊥, 1)]

In position space this can be written as

S(x−y)=S(0)(x−y)− αsNc

2π2

∫ 1

0

dξ

1− ξ

∫
d2z

(x− y)2

(x− z)2(y − z)2
[S(x−y)−S(x−z)S(z−y)]

or, if we di�erentiate with respect to Y ,

∂

∂Y
S(x− y) = −αsNc

2π2

∫
d2z

(x− y)2

(x− z)2(y − z)2
[S(x− y)− S(x− z)S(z− y)]

Which is the well-known Balitsky-Kovchegov evolution equation for S
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The subtracted cross section

After the divergences have been subtracted, the multiplicity is �nite...
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...but negative above some p⊥. This is similar to the results obtained when
including all the channels (Stasto, Xiao, Zaslavsky)

At large p⊥ the CF term is positive → the negativity comes from the Nc term
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The origin of the negativity

The fact that the Nc term is negative at large p⊥ can be understood by
looking at its large-k⊥ limit:

Nc

2

αs
2π2

∫
dz

z2
Dh/q(z)

∫ ξf

τ/z

dξ

(1− ξ)+
K(ξ) , K(ξ)=(1+ξ2)

xp
ξ
q

(
xp
ξ

)
J (k⊥, ξ)

At large k⊥, K(ξ) behaves like K(ξ) ≈ (1+ξ2)
xp
ξ
q

(
xp
ξ

)
2ξ

k4⊥

∫
d2q

(2π)2
q2S(q⊥) ,

which is positive and generally increasing with ξ.

Therefore the plus-distribution will lead to a negative contribution.

This plus-distribution comes from the subtraction of the rapidity divergence

Let us come back to the renormalized UGD as de�ned by Chirilli, Xiao, Yuan:

S(k⊥) = S(0)(k⊥) + 2αsNc

∫ 1

0

dξ

1− ξ [J (k⊥, 1)− Jv(k⊥, 1)]

The rapidity divergence occurs at ξ = 1 so this point should be included in the
subtraction term. But the choice of the lower limit is rather arbitrary
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The rapidity divergence subtraction

More generally one could use

S(k⊥) = S(0)(k⊥) + 2αsNc

∫ 1

ξf

dξ

1− ξ [J (k⊥, 1)− Jv(k⊥, 1)]

where we have introduced ξf ∈ [0 : 1[ which plays the role of a (rapidity)
factorization scale, arbitrary at this stage. It determines how much of the �nite
contribution is considered to be part of the evolution of the target

At large k⊥ the Nc term now reads

Nc

2

αs
2π2

∫
dz

z2
Dh/q(z)

(∫ ξf

τ/z

dξ

1− ξK(ξ) +

∫ 1

ξf

dξ

1− ξ [K(ξ)−K(1)]

)
.

Since K(ξ) is positive and increases with ξ, the �rst term yields a positive
contribution while the second one yields a negative contribution

If we increase ξf, we make the positive contribution larger and the negative
contribution smaller → increase of the cross section

Like for other arbitrary scales, physical quantities should not depend on ξf
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Dependence of the cross section on ξf

Multiplicity for several values of ξf between 0 and 1:
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As expected, larger values of ξf lead to positive cross sections up to larger p⊥

The results depend strongly on the choice of ξf

Here we have varied ξf in a very wide range. We need to �x it to a �physical�
value and then vary it in a reasonable range to estimate the remaining
uncertainty
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How to choose the value of ξf

We need a condition to specify which contributions will be part of the evolution
of the target. Let us consider a typical NLO diagram:

q q− l, ξ

l, 1− ξ

The light cone energy introduced from the gluon emission is

∆k− =
1

2xpP+

[
l2

1− ξ +
(q− l)2

ξ
− q2

]
=
xLOg P−

k2

(l− (1− ξ)q)2

ξ(1− ξ)

Here we decide to absorb �uctuations with ∆k− larger than a certain
factorization scale xf in the evolution of the target. At large k⊥ this leads to

∆k− ≈
xLOg P−

k2

Q2
s

1− ξ ≥ xfP
− ⇔ 1− ξ ≤ Q2

s

k2

xLOg
xf
⇒ ξf = 1− Q2

s

k2

xLOg
xf

,

with a �natural� value xf ∼ xLOg . In practice we use ξf =
k2⊥

k2⊥+
xLOg
xf

Q2
s

,

which has the same large k⊥ behaviour and goes smoothly to ξf = 0 at k⊥ = 0
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Results with a k⊥-dependent ξf

Multiplicity for
xf
xg
∈
{

1, 1
2
, 2
}
:
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At small p⊥ the dependence of the cross section on
xf
xg

is rather small

Values of
xf
xg

in [ 1
2

: 2] still lead to negative cross sections at large p⊥

However the p⊥ value where this occurs depends strongly on this ratio

In particular a value of
xf
xg

= 2 extends signi�cantly the range of positivity
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Future improvements

These results may not seem very promising but they were obtained in a very
simplistic approach.

Future directions that may lead to improvements:

Implement the light cone ordering condition in an exact way in the transverse
momentum integrals. For now we have used the external transverse scales k⊥
and Qs, which allows us to reuse many results of Chirilli, Xiao, Yuan

Use a more physical dipole cross section
The GBW model leads to simple analytical expressions. However in this model
the NLO cross section is completely governed by the NLO corrections (∼ k−4

⊥ )
at large p⊥. A dipole cross section obtained by solving the Balitsky-Kovchegov
equation should lead to a power-law behaviour of the LO contribution at large
p⊥ and so less sensitivity to the NLO corrections
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Conclusions

We proposed to modify the subtraction procedure of the rapidity divergence to
solve the issue of large negative NLO corrections at large p⊥ in this process

We introduced a rapidity factorization scale ξf
- The NLO cross section at large p⊥ is very sensitive to the choice of ξf
- By increasing ξf it is possible to make the cross section positive up to
arbitrarily large values of p⊥

We proposed to �x ξf by imposing light cone ordering
- The cross section still becomes negative at some p⊥ when ξf is varied
in its �natural� range

- The p⊥ value at which this occurs changes a lot in this �natural� range

Directions for future work:

Implement the light cone ordering condition in an exact way

Use more physical dipole cross sections

These steps are necessary before drawing de�nitive conclusions on this approach
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