Multiplicity dependence of strange particle production in proton-proton collisions with the ALICE detector

F. Fionda⁽¹⁾, On behalf of the ALICE Collaboration

(1) University & INFN, Cagliari, Italy

Initial Stages 2016 Lisbon, 23-27 May 2016

Outline

- Physics motivations
- ✓ The ALICE detector
 - multiplicity selection
- Detection of strange particles in ALICE
- Results: multiplicity dependence of

 - $\sim \langle p_{T} \rangle$
 - $\sim \Lambda / K_{s}^{0}$ ratio as a function of p_{T}
 - Particle ratios
- Conclusions and Outlook

Physics motivation

A-A collisions:

- "Strangeness enhancement" originally proposed as a signature for the deconfinement^[1]
- "Baryon anomaly" observed in the strangeness sector $\frac{5}{2}$
- p-A collisions:
 - Important for the correct interpretation of A-A results (disantangle final from initial-state effects)
 - Several multiplicity-dependent studies (e.g. Λ/K⁰_s ratio vs p_T) show an evolution with multiplicity which is qualitatively similar to the one observed in A-A

pp collisions:

- Small system: no collectivity or deconfinement expected
- Minimum bias pp used as a reference for "large" systems

[1] J. Rafelski and B. Muller, "Strangeness Production in the Quark–Gluon Plasma," Phys. Rev. Lett. 48 (1982) 1066.

PLB 728 (2014) 25-38

2.4

ALICE, p-Pb, \(\sigma_{NN} = 5.02\) TeV

ALICE, Pb-Pb, \(\sigma_{NN} = 2.76\) TeV

1.8

0.5%

1.6

1.4

1.2

0.8

0.6

0.4

0.2

0 2 4 6 8 2 4 6 8

ALI-PUB-58065

Physics motivation

A-A collisions:

- "Strangeness enhancement" originally proposed as a signature for the deconfinement^[1]
- "Baryon anomaly" observed in the strangeness sector $\frac{5}{2}$
- p-A collisions:
 - Important for the correct interpretation of A-A results (disantangle final from initial-state effects)
 - Several multiplicity-dependent studies (e.g. Λ/K⁰_s ratio vs p_T) show an evolution with multiplicity which is qualitatively similar to the one observed in A-A

pp collisions:

- Small system: no collectivity or deconfinement expected
- Minimum bias pp used as a reference for "large" systems
- ✓ Is there a multiplicity dependence in pp ? 0.4

^[1] J. Rafelski and B. Muller, "Strangeness Production in the Quark–Gluon Plasma," Phys. Rev. Lett. 48 (1982) 1066.

The ALICE detector

V0A

ITS

Main detectors employed for the analysis:

✓ ITS (|η|<0.9):</p>

- 6 layers of silicon detectors based on three different technologies (pixel, drift, strip)
- primary vertex, tracking, PID (via dE/dx)

✓ TPC (|η|<0.9):</p>

- Gas-filled (Ne/CO₂) cylindrical barrel;
 MWPC used for the read-out
- tracking (up to 159 points/ track), PID (via dE/dx)

✓ V0

- Forward arrays of scintillators placed on either side of the interaction region (2.8 < η < 5.1 and -3.7 < η < -1.7)
- trigger, beam gas rejection, multiplicity estimation
- Event selection performed via percentiles of the VOM amplitude distribution (VOA+VOC)
- \checkmark $\langle dN_{ch}/d\eta \rangle$ estimated as the average number of primary charged tracks in $|\eta|$ <0.5

V₀C

5

F. Fionda

Detection of strange particles

Strange particles are identified through their specific decay topologies:

Single-strange partcles:

$$\Lambda \rightarrow p \pi^{-}$$
 $\Lambda \rightarrow \overline{p} \pi^{+}$
(B.R. 63.9 %, $c\tau = 7.89 \text{ cm}$)

- Cuts tuned in order to optimize S/B
- Yields extracted by bin counting technique

Detection of strange particles

Strange particles are identified through their specific decay topologies:

Multi-strange partcles:

$$\stackrel{\checkmark}{\Xi}^- \rightarrow \stackrel{\Lambda}{\Lambda} \pi^ \stackrel{\Xi}{\Xi}^+ \rightarrow \stackrel{\Lambda}{\Lambda} \pi^+$$
(B.R. 99.9 %, $c\tau = 4.91$ cm)

$$\stackrel{\checkmark}{\Omega}^- \rightarrow \stackrel{\Lambda}{\Lambda} \stackrel{K^-}{K^+}$$
(B.R. 67.8 %, $c\tau$ = 2.46 cm)

- Cuts tuned in order to optimize S/B
- Yields extracted by bin counting technique

Results

p₋-differential spectra (I)

- Spectra become harder at higher multiplicities
- ightharpoonup Ratios to integrated (over multiplicity) spectra show a saturation above $p_{_{\rm T}}$ ~ 3 GeV/c

p_{T} -differential spectra (II)

- ✓ Spectra become harder at higher multiplicities → similar results for multi-strange hadrons
- ightharpoonup Ratios to integrated (over multiplicity) spectra show a saturation above p_{τ} ~ 3 GeV/c
 - \rightarrow Levy-Tsallis fits used to get $\langle p_{_{T}} \rangle$ and dN/dy vs multiplicity (extapolation down to $p_{_{T}}$ =0)

<p_> vs multiplicity

- Increasing of \(\rho_T \) as a function of multiplicity as a direct consequence of the hardening of the spectra
- Stronger increasing trend for heavier particles

<p_> vs multiplicity

- ✓ Increasing of $\langle p_T \rangle$ as a function of multiplicity as a direct consequence of the hardening of the spectra
- Stronger increasing trend for heavier particles
- Similar behaviour observed in p-Pb / Pb-Pb as a function of multiplicity / centrality

$\Lambda / K_{s}^{0} vs p_{T}$

ALI-PREL-98746

- \checkmark Significant enhancement observed for \land / K_{s}^{0} at intermediate p_{T} (~3 GeV/c)
- ightharpoonup Maximum shifted towards higher $p_{_{\rm T}}$ as the multiplicity increases

$\Lambda / K_S^0 vs p_T$

[p-Pb, Pb-Pb: PLB 728 (2014) 25-38, PRL 111 (2013) 222301]

- ✓ Significant enhancement observed for Λ / K_s^0 at intermediate p_T (~3 GeV/c)
- ightharpoonup Maximum shifted towards higher $p_{_{\rm T}}$ as the multiplicity increases
- ✓ Qualitative similar behaviour observed in p-Pb and Pb-Pb → in Pb-Pb this is generally discussed in terms of collective flow and / or quark recombination
- ✓ The magnitude of the effect looks larger in Pb-Pb moving from more peripheral to more central events, but also the corresponding $\langle dN_{ch}/d\eta \rangle$ increase is relatively large (~10²)

Λ/π ratio vs multiplicity

Shaded areas: uncorrelated (vs multiplicity) systematics

✓ Increasing trend for both Pb-Pb and p-Pb as a function of multiplicity
 ✓ reach Gran Canonical (GC) saturation limit in p-Pb

IS 2016

Good agreement with minimum-bias pp

Λ/π ratio vs multiplicity

Shaded areas: uncorrelated (vs multiplicity) systematics

- Increasing trend observed also for pp as a function of multiplicity
- Excellent agreement for pp and p-Pb vs multiplicity
- Pythia6 / Pythia8 with and without Color Reconnection are not able to reproduce the observed enhancement

Increasing trend for both Pb-Pb and p-Pb as a function of multiplicity
 reach Gran Canonical (GC) saturation limit in p-Pb

IS 2016

✓ Good agreement with minimum-bias pp

Ξ/π and Ω/π ratios vs multiplicity

- ✓ Increasing trend for p-Pb as a function of multiplicity
 - \checkmark Ξ / π ratio exceeds the GC saturation limit at high multiplicity
 - \checkmark Ω / π stays below the GC prediction
- ✓ Very good agreement between pp and p-Pb vs multiplicity
- \checkmark Clear rise with multiplicity for multi-strange baryons, as already observed for the \land / π
- Pythia6 / Pythia8 tunes don't reproduce the observed trend

Self-normalized Baryon/π ratio vs multiplicity

Baryon / π ratio as a function of multiplicity normalized to the corresponding minimum bias value for pp and p-Pb

- Similar results in pp / p-Pb
- ightharpoonup p / π doesn't show any multiplicity dependence
- Strange baryon over π ratios increase as a function of multiplicity
 - > Enhancement related to the strangeness content rather than to the baryon content
- Relative increase with multiplicity larger for baryons with a larger strangeness content

18

F. Fionda

Conclusions

Multiplicity dependence of strange and multi-strange particle production studied by the ALICE Collaboration in pp @ 7 TeV

- ✓ Hardening of p_{τ} spectra at high $\langle dN_{ch}/d\eta \rangle$
 - \checkmark corresponding increase observed for the $\langle p_{\tau} \rangle$
- \checkmark \land / K_{s}^{0} ratio at high $\langle dN_{ch}/d\eta \rangle$ enhanced at intermediate p_{T}
 - ✓ qualitative similar behaviour observed in p-Pb and Pb-Pb
- ✓ Strange particle over π ratios (Λ/ π , Ξ/ π , Ω/ π) exhibit an increasing trend as a function of multiplicity
 - ✓ Baryons with a larger strangeness content show a faster increase with $\langle dN_{_{ch}}/d\eta \rangle$
 - ✓ Pythia 6 and Pythia 8 (even with Color Reconnection) are not able to reproduce the observed enhancement

19

IS 2016 F. Fionda

Outlook: pp @ 13 TeV

Analysis on Run II data is ongoing...

- ✓ Main goal of RunII analysis: extend multiplicity reach → useful to understand trends at very high multiplicity
 - \checkmark e.g. multi-strange baryon / π ratios: continuous increase ? saturation ?
- ✓ Large sample of high-multiplicity triggered events already available up to ~10 times the average multiplicity based on data collected during 2015 (trigger rejection factor ~10⁻³) → even larger trigger rejection factor foreseen for 2016 (~3·10⁻⁴)

Thank you!