Jet fragmentation, electro-weak boson, and charmonium production in pp and p-Pb

Miguel Arratia for ATLAS
Cavendish Laboratory, University of Cambridge

Initial Stages 2016, Instituto Superior Técnico, Lisboa

Motivation

- Study nuclear modification of PDFs
- Benchmark for studies of AA collisions
- Search for final state effects, normally attributed to QGP (?)

Semiconductor tracker

Datasets

p-Pb @ 5 TeV

 $28.1 \text{ nb}^{-1} \pm 2.7\%$

pp @ 2.76 TeV

$$3.9 \text{ pb}^{-1} \pm 3.1\%$$

Electroweak Bosons

W and Z bosons

W measured in muon channel

Z measured in electron and muon channels.

35 **ATLAS** p+Pb 2013, L_{...} = 29 nb⁻¹ 30 $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ $d\sigma(Z \rightarrow II)/dy_z^* [nb]$ Data - CT10 (NLO) CT10+EPS09 (NLO) ---- MSTW2008 (NNLO) 1.5 Data / CT10 (NLO) 0.5 Data/Model Data / CT10+EPS09 (NLO) Data / MSTW2008 (NNLO) 0.5

Z boson cross-section

- Hints of excess on Pb-going side
- Otherwise consistent with calculations
- Uncertainties limit discrimination power of different PDFs and nuclear effects

$d\sigma(W \to \mu v)/d\eta^{\mu}_{lab} [nb]$ 00 all centralities 80 60 CT10 Data ATLAS Preliminary p+Pb, 28.1 nb⁻¹ $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ 20 data/model 1.2 0.8 0.2 Data -0.2CT10 0

W boson cross-section

- Hints of excess on the Pb-going side (specially W-)
- Otherwise consistent with calculations with CT10 PDF
- Asymmetry well reproduced

Centrality determination

- Uses forward calorimeters on the Pb-going side
- Glauber model, and extensions used to determine mean number of participants
- Analysis assumes no correlation between hard scattering and soft underlying activity

Forward Calorimeters (FCal) $3.2 < \eta < 4.9$

Centrality bias correction

Phys. Rev. C 92, 044915 (2015)

 Estimate of impact of correlation between hard scattering and soft underlying event from model [arXiv:1412.0976] and data.

Z boson, centrality dependence

- Reasonable scaling observed with standard Glauber model + centrality bias correction
- Some hints of slope in Glauber-Gribov extensions that include colour fluctuations

W boson, centrality dependence

- Reasonable scaling observed with standard Glauber model + centrality bias correction
- Some hints of slope in Glauber-Gribov extensions that include colour fluctuations

Charmonium

2D fit to mass and pseudo-lifetime

- Maximum likelihood fit to extract yields and fraction from b-hadron decays
- Event-by-event weighting for acceptance, reconstruction, and trigger efficiencies $w_{\rm total}^{-1} = A \cdot \varepsilon_{\rm reco} \cdot \varepsilon_{\rm trig}$

$$R_{p\text{Pb}} = \frac{1}{\langle T_{p\text{Pb}} \rangle_{\text{cent}}} \frac{1/N_{\text{evt}} d^2 N_{\psi}^{p+\text{Pb}}/dy^* dp_{\text{T}}}{d^2 \sigma_{\psi}^{pp}/dy dp_{\text{T}}}$$

$$J/\psi \qquad \qquad J/\psi \text{ from } J/\psi \text{ from } J/\psi \text{ from } J/\psi \text{ at LAS Properties and } J/\psi \text{ from } J/\psi \text{ at LAS Properties } J/\psi \text{ at LAS$$

After centrality bias correction, ratio is flat

$$\psi(2S) \quad R_{p\text{Pb}} = \frac{1}{\langle T_{p\text{Pb}} \rangle_{\text{cent}}} \frac{1/N_{\text{evt}} \, d^2 N_{\psi}^{p+\text{Pb}} / dy^* dp_{\text{T}}}{d^2 \sigma_{\psi}^{pp} / dy dp_{\text{T}}}$$

$$\frac{3}{2.5} \quad \text{Prompt } \psi(2S) \quad \text{ATLAS Preliminary } p+\text{Pb} \sqrt{s_{\text{NN}}} = 5.02 \, \text{TeV} -1.5 < y^* < 1.5}{1.5 < y^* < 1.5} = 10 < p_{\text{T}} < 30 \, \text{GeV}$$

$$1.5 \quad Data \quad \text{Data (No Bias Correction)}$$

$$0 \quad 5 \quad 10 \quad 15 \quad 20 \quad 25$$

$$< N_{\text{part}} > 10 < p_{\text{T}} < 30 \, \text{TeV}$$

Hint of centrality dependence

Standard candle: the Z boson

Use Z boson as a model independent reference of centrality

Prompt

J/ψ to Z ratio vs multiplicity

Flat ratio suggests no strong modification

J/ψ from m b to m Z ratio vs multiplicity

Flat ratio suggests no strong modification

Prompt $\psi(2S)$ to Z ratio vs multiplicity

Hint of suppression at high multiplicities

Jet fragmentation

Fragmentation functions in pp and pA collisions

- Jets reconstructed with anti-kT algorithm
- Fragmentation functions measured over wide jet pT range for charged particles with pT > 3.5 GeV

Ratio of pp data to Pythia and Herwig++

The ability of these generators to describe the data is in qualitative agreement with the comparisons of fragmentation functions at 7 TeV

Ratio of p-Pb data to (extrapolated) pp reference

Clear enhacement at high-z for high-pT jets

Conclusions

- Electroweak bosons
 - Hints of excess on the Pb-going side
 - Reasonable scaling with Ncoll in the standard Glauber model, once bias correction applied
- Charmonium
 - Hint of suppression of excited state
- Jet fragmentation
 - Excess at high-z

Stay tuned: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HeavylonsPublicResults

Looking forward for updated results with 5 TeV pp data!

BACKUP SLIDES

Extrapolation

$$D_{pp}(z)_{5.02\text{TeV}} = D_{pp}(z)_{2.76\text{TeV}} \times \frac{D_{\text{PYTHIA6}}(z)_{5.02\text{TeV}}}{D_{\text{PYTHIA6}}(z)_{2.76\text{TeV}}}$$

Miguel Arratia 30

Forward-to-backward ratio

$$R_{\rm FB}(p_{\rm T}, y^*) \equiv \frac{d^2 \sigma(p_{\rm T}, y^* > 0)/dp_{\rm T} dy^*}{d^2 \sigma(p_{\rm T}, y^* < 0)/dp_{\rm T} dy^*}$$

- Consistent with unity within uncertainties in both cases
- Consistent with expectations from calculations that include shadowing

Forward-to-backward ratio

$$R_{\rm FB}(p_{\rm T}, y^*) \equiv \frac{d^2 \sigma(p_{\rm T}, y^* > 0)/dp_{\rm T} dy^*}{d^2 \sigma(p_{\rm T}, y^* < 0)/dp_{\rm T} dy^*}$$

- Consistent with unity within uncertainties in both cases
- Consistent with expectations from calculations that include shadowing

Comparison with LHCb

Combined data suggest strong kinematic dependence of nuclear effects