# Particle production and source sizes in $\sqrt{s_{\mathrm{NN}}}=5.02 \mathrm{TeV} p-\mathrm{Pb}$ collisions with ATLAS 

Michael (Felix) Clark

On behalf of the ATLAS collaboration
3rd International Conference on the Initial Stages in High-Energy Nuclear Collisions Lisbon, Portugal

May 24, 2016


## Introduction (Multiplicity)

- $p+\mathrm{Pb}$ collisions are useful for understanding effects of "cold nuclear matter" on charged particle production
- It's important to have detailed understanding of global observables in these events
- Nuclear modification factor

$$
R_{p \mathrm{~Pb}}\left(p_{\mathrm{T}}, y^{\star}\right)=\frac{1}{\left\langle T_{\mathrm{Pb}}\right\rangle} \frac{1 / N_{\text {evt }} \mathrm{d}^{2} N_{p \mathrm{~Pb}} / \mathrm{d} y^{\star} \mathrm{d} p_{\mathrm{T}}}{\mathrm{~d}^{2} \sigma_{p p} / \mathrm{d} y^{\star} \mathrm{d} p_{\mathrm{T}}}
$$

is studied differentially in centrality, transverse momentum $\left(p_{T}\right)$, and rapidity $\left(y^{\star}\right)$

- $y^{\star}$ is rapidity in nucleon-nucleon centre-of-momentum frame, needed for fair comparison to $p p$
- interpolation between 2.76 and 7 TeV is used for $p p$ reference


## ATLAS inner detector

- Pixel detector - 82 million silicon pixels
- Semiconductor Tracker - 6.2 million silicon microstrips
- Transition Radiation Tracker - 350k drift tubes
- 2 T axial magnetic field


Reconstructed tracks from $|\eta|<2.5$ at $p_{\mathrm{T}}>0.1 \mathrm{GeV}$

## Data selection



- Two separate $p+\mathrm{Pb}$ runs from the LHC at $\sqrt{s_{\mathrm{NN}}}=5.02 \mathrm{TeV}$
- $1 \mu \mathrm{~b}^{-1}$ (multiplicity) / $28 \mathrm{nb}^{-1}$ (femtoscopy) MinBias data
- centrality determined from $\sum E_{\mathrm{T}}$ in the Pb -going forward calorimeter at $3.1<|\eta|<4.9$


## $p_{\mathrm{T}}$ spectra


$p_{\mathrm{T}}$ spectra in intervals of pseudorapidity $\eta$ (left) and centrality (right)

## Differential multiplicity



particle production as a function of $\eta$ (left) and $y^{\star}=y-y_{\text {lab }}$ (right) in several centrality intervals is shown above.
$y_{\text {lab }}=0.465$ is the nucleon-nucleon centre-of-momentum rapidity in the lab frame.
rapidity is calculated with pion mass $\left(y_{\pi \pi}^{\star}\right)$, and correction to real $y^{\star}$ is derived using Hijing
production is enhanced on Pb -going ( $-z$ ) side of central events.

## Glauber-Gribov colour fluctuations (GGCF)

Number of nucleon participants $N_{\text {part }}$ calculated with:

- Glauber model with constant cross section $\sigma_{\mathrm{NN}}$
- Glauber-Gribov color fluctuation (GGCF) model, which allow $\sigma_{\mathrm{NN}}$ to fluctuate event-by-event
$\omega_{\sigma}$ parameterizes extent of fluctuations


(above: $N_{\text {part }}$ distributions and corresponding centrality)


## $R_{p \mathrm{~Pb}}$



Using a model with large fluctuations in the NN cross-section reduces central $R_{p \mathrm{~Pb}}$ significantly.
It also increases peripheral $R_{p \mathrm{~Pb}}$ to be more compatible with unity.

## $R_{p \mathrm{~Pb}}\left(p_{\mathrm{T}}\right)$ in rapidity $\left(y^{\star}\right)$ intervals



- Low- $p_{\mathrm{T}}$ suppression. Central events have high- $p_{\mathrm{T}}$ enhancement most prominent in Pb -going side.
- larger GGCF $\omega_{\sigma}$ brings $R_{p \mathrm{~Pb}}$ closer to unity


## Introduction (Femtoscopy)

- Femtoscopy uses momentum-space correlation functions to infer the source density function:

$$
C_{\mathrm{k}}(q)=\int d^{3} r S_{\mathrm{k}}(r)\left|\psi_{q}(r)\right|^{2}
$$

Here $k=\left(p_{1}+p_{2}\right) / 2$ is the average pair momentum and $q=\left(p_{1}-p_{2}\right)$ is the relative momentum.

- $C_{k}(q)$ is fit to a function to get length scales of $S_{k}(r)$, which are referred to as the HBT radii.
- Bose-Einstein correlations between identical pions give particularly good resolution.


## Pion identification



- Charged pions are identified using $d E / d x$ measured with charge deposited in pixel hits.
- The pair purity estimated from simulation is shown (left) as a function of pair $k_{\mathrm{T}}$ and $y_{\pi \pi}^{\star}$.


## Jet fragmentation correlation

- significant background contribution observed in the two-particle correlation function (top right)
- suppressing hard processes in HIJING causes the correlation to disappear (bottom right)
- since correlations come from jet fragmentation, they appear in opposite-sign pairs as well
- jet fragmentation is measured in opposite-sign and the results are used to infer contribution to same-sign


ATLAS-CONF-2016-027

## Summary of fitting procedure



1. amplitude and width of opposite-sign correlation function are measured, with resonances removed by mass cuts (blue dashed)
2. the results from +- are used to fix $\pm \pm$ background (violet dotted)
3. full correlation function $\pm \pm$ (dark red) is fit on top of jet background to extract the source radii

## Invariant fit results



Decrease with rising $k_{\mathrm{T}}$ in central collisions, suggestive of collective behavior. This feature disappears in peripheral collisions.


Radii increase in Pb -going direction of central events. Peripheral are flat across rapidity.
N.B. Widths of boxes in these plots vary only for visibility purposes.

## Invariant fit results



Scaling of $R_{\text {inv }}$ with the cube root of average multiplicity curves slightly upward.

## $E$ $E$ $E$



Across centrality and rapidity intervals, the source size is tightly correlated with the local multiplicity.

## 3D fit results

In three dimensions, the Bertsch-Pratt ("out-side-long") coordinate system is used. It is boosted to the longitudinal co-moving frame (LCMF) of each pair.
$q_{\text {out }}$ : along $k_{\mathrm{T}}$
$q_{\text {side }}$ : other transverse direction
$q_{\text {long }}$ : longitudinal (boosted to LCMF)
The Bose-Einstein part of the correlation function is fit to an quasi-ellipsoid exponential:

$$
\begin{aligned}
& C_{B E}(\mathbf{q})=1+\exp (-\|R \mathbf{q}\|) \\
& R=\left(\begin{array}{ccc}
R_{\text {out }} & 0 & R_{\text {ol }} \\
0 & R_{\text {side }} & 0 \\
R_{\text {ol }} & 0 & R_{\text {long }}
\end{array}\right) .
\end{aligned}
$$

## 3 D radii vs. $k_{\mathrm{T}}$ and $y_{\pi \pi}^{\star}$

- decreasing size with rising $k_{T}$ in central events; trend is diminished in peripheral.
- radii vs. $y_{\pi \pi}^{\star}$ are flat in peripheral, and larger on Pb -going side of central
- typically $R_{\text {out }}<$ $R_{\text {side }}<R_{\text {long }}$


$\underset{\substack{\text { E } \\ \text { 亳 }}}{\text { © }}$





## 3D radii vs. multiplicity (global and local)








- scaling vs.
$<d N / d \eta>^{1 / 3}$ shown on left
- three-dimensional radii also tightly correlated with local multiplicity (right)

ATLAS-CONF-2016-027

## Ratio of $R_{\text {out }} / R_{\text {side }}$




- $R_{\text {out }}$ couples to the lifetime directly where $R_{\text {side }}$ does not
- small ratio $R_{\text {out }} / R_{\text {side }}$ is indicative of "explosive" event
- steadily decreases with rising $k_{\mathrm{T}}$ and is constant over rapidity
- marginally larger in central events


## Transverse area and volume elements






At low $k_{\mathrm{T}}$, the transverse area element $R_{\text {out }} R_{\text {side }}$ scales linearly with multiplicity. The volume element $\operatorname{det}(R)$ scales linearly with multiplicity at higher $k_{T}$.

## Volume scaling with $N_{\text {part }}$ including color fluctuations



Volume scaling curvature with $N_{\text {part }}$ is more modest when fluctuations in the proton's size are accounted for.

## $R_{\text {ol }}$ cross term




In central events on the forward side, there is strong evidence of a positive $R_{\mathrm{ol}}$ ( $4.8 \sigma$ combined significance in $0-1 \%$ centrality)

- demonstrates breaking of boost invariance: $z$-asymmetry is manifest in proton-going side.
- requires both longitudinal and transverse expansion in hydrodynamic models


## Conclusion

- Nuclear modification factor, as well as one- and three-dimensional HBT radii, are measured in proton-lead collisions at 5 TeV .
- These measurements are presented differentially in centrality, transverse momentum, and rapidity.
- Accounting for fluctuations in the nucleon-nucleon cross section is seen to significantly affect the behavior of both the nuclear modification factors and the source size.
- HBT Radii in central events show a decrease with increasing $k_{\mathrm{T}}$, which is qualitatively consistent with collective expansion. This trend is diminished in peripheral events.
- Variation of source over rapidity follows local multiplicity.
- Evidence for non-zero (positive) $R_{o l}$ on the proton-going side of central events is observed.


## BACKUP SLIDES

## Comparison of $R_{p \mathrm{~Pb}}$ with other collaborations



## $R_{p \mathrm{~Pb}}$ as function of rapidity


see CERN-EP-2016-007

## $R_{p \mathrm{~Pb}}$ inclusive in centrality



Choice of initial geometry model does not significantly affect results inclusive in centrality

## $R_{\mathrm{CP}}$ central to peripheral ratio


modest value of $\omega_{\sigma}=0.11$ gives consistent high- $p_{\mathrm{T}}$ production across centralities

## $R_{\mathrm{CP}}$ as function of rapidity



Central-to-peripheral ratio as function of rapidity, as low and high $p_{T}$

## Introduction (Femtoscopy)

- Recent observations of angular correlations in $p+\mathrm{Pb}$ collisions indicate signs of collective behavior - the so-called "ridge".
- Femtoscopy is used to provide additional handles on the size, shape, and evolution of the particle source.
- Femtoscopy uses the sensitivity of the momentum-space correlation function to the source density function:

$$
C_{\mathbf{k}}(q)-1=\int_{\partial \Sigma} d^{3} r S_{\mathrm{k}}(r)\left(|\langle q \mid r\rangle|^{2}-1\right)
$$

Here $k=\left(p_{1}+p_{2}\right) / 2$ is the average pair momentum and $q=\left(p_{1}-p_{2}\right)$ is the relative momentum, and $\partial \Sigma$ is the freeze-out hypersurface of the source.

- $C(q)$ is fit to a function and results are used to infer the length scales of $S_{\mathrm{k}}(r)$, which are referred to as the HBT radii.
- For identical non-interacting bosons, $C_{k}(q)-1$ is the Fourier transform of the source density. These results use charged pions.


## Introduction (Femtoscopy)

- Results will focus on exponential fits to the Bose-Einstein part of two-pion correlation functions $C_{B E}$ :

$$
C_{B E}(q)=1+e^{-\|R q\|}
$$

The analysis is done as a function of $q_{\mathrm{inv}}$ or with 3-dimensional $\mathbf{q}$, where $R$ is a symmetric matrix.

- The full experimental correlation function is the Bowler-Sinyukov form:

$$
C_{\exp }(q)=\left[(1-\lambda)+\lambda K\left(q_{\mathrm{inv}}\right) C_{B E}(q)\right] \Omega(q)
$$

where $\lambda$ is a free parameter, $K\left(q_{\text {inv }}\right)$ accounts for Coulomb interactions between the pions and $\Omega(q)$ represents the non-femtoscopic background features of the correlation function.

- Mis-identified pions, coherent emission, weak decays contribute to decrease in $\lambda$.


## Pion identification



Three PID selection criteria are defined, and a variation from the nominal selection to a looser and tigher definition is used as a systematic variation.

## (Jet fragmentation in opposite-sign Hijing)




Wide correlation disappears in opposite-sign too when turning off hard processes

## Jet fragmentation correlation

Common methods to account for this background include:

1. Using a double ratio $C(q)=C^{\text {data }}(q) / C^{M C}(q)$.

- Monte Carlo tends to over-estimate the magnitude of the effect, which can skew the results significantly

2. Partially describing the background shape using simulation and allowing additional free parameters in the fit.

- one might worry about additional free parameters biasing the fits Here we measure the jet fragmentation in opposite-sign and use a mapping derived in Pythia to predict the form in same-sign.


## Jet fragmentation correlation

A data-driven method is developed to constrain the effect of hard processes. Fits to the opposite-sign correlation function are used to predict the fragmentation correlation in same-sign. This has its own challenges.

1. Resonances appear in the opposite-sign correlation functions

- mass cuts around $\rho, K_{S}$, and $\phi$
- cut off opposite-sign fit below 0.2 GeV

2. Fragmentation has different effect on the opposite-sign correlation function than on the same-sign

- a mapping is derived from opposite- to same-sign using simulation
- opposite-sign fit results in the data are used to fix the background description in the same-sign


## Jet fragmentation correlation

The jet fragmentation is modeled as a stretched exponential in $q_{\text {inv }}$ :

$$
\Omega\left(q_{\mathrm{inv}}\right)=1+\lambda_{\mathrm{bkgd}}^{\mathrm{inv}} e^{-\left|R_{\mathrm{bkgd}}^{\mathrm{inv}} q_{\mathrm{inv}}\right|^{\alpha_{\mathrm{bkgd}}^{\mathrm{inv}}}}
$$

In 3D it is factorized into components parallel and perpendicular to jet axis

$$
\Omega(\mathbf{q})=1+\lambda_{\mathrm{bkgd}}^{\mathrm{osl}} e^{-\left|R_{\mathrm{bkgd}}^{\mathrm{out}} q_{\mathrm{out}}\right|^{\alpha_{\mathrm{bkgd}}^{\mathrm{out}}}-\left|R_{\mathrm{bkgd}}^{\mathrm{sl}} q_{\mathrm{sl}}\right|^{\alpha_{\mathrm{bkgd}}^{\mathrm{sl}}}}
$$

with $q_{\mathrm{sl}}=\sqrt{q_{\text {side }}^{2}+q_{\text {long }}^{2}}$.
These parameters are studied in Pythia, and a mapping from opposite-sign to same-sign values is derived.

## Jet fragmentation mapping



model $R_{\text {inv }}^{ \pm \pm}$as proportional to $R_{\text {inv }}^{+-}$(right). Then with constant fixed, do $k_{\mathrm{T}}$-dependent comparison of background amplitude in $\pm \pm$ and +(left). Does not work perfectly but does increasingly well at high $k_{T}$, where the effect is relevant.


$R_{\text {inv }}^{ \pm \pm}$is modelled as proportional to $R_{\text {inv }}^{+-}$(right). Then with constant fixed, do $k_{\mathrm{T}}$-dependent comparison of background amplitude in $\pm \pm$ and +- (left). Does not work perfectly but does increasingly well at high $k_{\mathrm{T}}$, where the effect is relevant.

## Example fit to invariant correlation function



## Example fit to 3D correlation function



Fit appears poor along $q_{\text {out }}$ axis, but works well globally. Note that the $q_{\text {out }}$ axis is right where the tracks have the same outgoing angle. Moving just 1 or 2 bins away helps significantly.

## Systematics example ( $R_{\text {inv }}$ )




The above plots show the contributions of each systematic uncertainty on $R_{\text {inv }}$ as a function of $k_{\mathrm{T}}$ and $N_{\text {part }}$.

## Systematics example ( $\lambda_{\text {inv }}$ )




The above plots show the contributions of each systematic uncertainty on $\lambda_{\text {inv }}$ as a function of $k_{\mathrm{T}}$ and $N_{\text {part }}$.

