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Introduction (Multiplicity)

I p+Pb collisions are useful for understanding effects of “cold nuclear
matter” on charged particle production

I It’s important to have detailed understanding of global observables
in these events

I Nuclear modification factor

RpPb(pT, y
?) =

1

〈TPb〉
1/Nevtd

2NpPb/dy
?dpT

d2σpp/dy ?dpT

is studied differentially in centrality, transverse momentum (pT),
and rapidity (y ?)

I y ? is rapidity in nucleon-nucleon centre-of-momentum frame,
needed for fair comparison to pp

I interpolation between 2.76 and 7 TeV is used for pp reference
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ATLAS inner detector

I Pixel detector - 82 million silicon pixels

I Semiconductor Tracker - 6.2 million silicon microstrips

I Transition Radiation Tracker - 350k drift tubes

I 2 T axial magnetic field

Reconstructed tracks from |η| < 2.5 at pT > 0.1 GeV
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Data selection

I Two separate p+Pb runs from the LHC at
√
sNN = 5.02 TeV

I 1 µb−1 (multiplicity) / 28 nb−1 (femtoscopy) MinBias data

I centrality determined from
∑

ET in the Pb-going forward
calorimeter at 3.1 < |η| < 4.9
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pT spectra
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see CERN-EP-2016-007

http://cds.cern.ch/record/2154442
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Differential multiplicity
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rapidity is calculated
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production is
enhanced on
Pb-going (-z) side
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see CERN-EP-2016-007

http://cds.cern.ch/record/2154442
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Glauber-Gribov colour fluctuations (GGCF)
Number of nucleon participants Npart calculated with:

I Glauber model with constant cross section σNN

I Glauber-Gribov color fluctuation (GGCF) model, which allow σNN

to fluctuate event-by-event

ωσ parameterizes extent of fluctuations
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see Eur. Phys. J. C (2016) 76:199
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RpPb
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Using a model with large fluctuations in the NN cross-section reduces
central RpPb significantly.

It also increases peripheral RpPb to be more compatible with unity.

see CERN-EP-2016-007

http://cds.cern.ch/record/2154442
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RpPb (pT) in rapidity (y ?) intervals
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I Low-pT suppression. Central events have high-pT enhancement
most prominent in Pb-going side.

I larger GGCF ωσ brings RpPb closer to unity

see CERN-EP-2016-007

http://cds.cern.ch/record/2154442
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Introduction (Femtoscopy)

I Femtoscopy uses momentum-space correlation functions to infer
the source density function:

Ck(q) =

∫
d3r Sk(r) |ψq(r)|2 .

Here k = (p1 + p2)/2 is the average pair momentum and
q = (p1 − p2) is the relative momentum.

I Ck(q) is fit to a function to get length scales of Sk(r), which are
referred to as the HBT radii.

I Bose-Einstein correlations between identical pions give particularly
good resolution.
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Pion identification
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I Charged pions are
identified using dE/dx
measured with charge
deposited in pixel hits.

I The pair purity
estimated from
simulation is shown
(left) as a function of
pair kT and y ?ππ.

ATLAS-CONF-2016-027
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Jet fragmentation correlation

I significant background
contribution observed in the
two-particle correlation function
(top right)

I suppressing hard processes in
HIJING causes the correlation to
disappear (bottom right)

I since correlations come from jet
fragmentation, they appear in
opposite-sign pairs as well

I jet fragmentation is measured in
opposite-sign and the results are
used to infer contribution to
same-sign
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Summary of fitting procedure
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1. amplitude and width
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correlation function
are measured, with
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by mass cuts (blue
dashed)

2. the results from +− are used to fix ±± background (violet dotted)

3. full correlation function ±± (dark red) is fit on top of jet
background to extract the source radii

ATLAS-CONF-2016-027
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Invariant fit results
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Decrease with rising kT in central
collisions, suggestive of collective
behavior. This feature disappears
in peripheral collisions.

Radii increase in Pb-going
direction of central events.
Peripheral are flat across
rapidity.

N.B. Widths of boxes in these plots vary only for visibility purposes.

ATLAS-CONF-2016-027
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Invariant fit results
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Scaling of Rinv with the cube root
of average multiplicity curves
slightly upward.

Across centrality and rapidity
intervals, the source size is
tightly correlated with the local
multiplicity.

ATLAS-CONF-2016-027



16/40

3D fit results

In three dimensions, the Bertsch-Pratt (”out-side-long”) coordinate
system is used. It is boosted to the longitudinal co-moving frame
(LCMF) of each pair.

qout: along kT

qside: other transverse direction

qlong: longitudinal (boosted to LCMF)

The Bose-Einstein part of the correlation function is fit to an
quasi-ellipsoid exponential:

CBE (q) = 1 + exp (−‖Rq‖)

R =

 Rout 0 Rol

0 Rside 0
Rol 0 Rlong

 .
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3D radii vs. kT and y ?ππ

I decreasing size
with rising kT in
central events;
trend is diminished
in peripheral.

I radii vs. y ?ππ are
flat in peripheral,
and larger on
Pb-going side of
central

I typically Rout <
Rside < Rlong

ATLAS-CONF-2016-027
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3D radii vs. multiplicity (global and local)
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I scaling vs.
< dN/dη >1/3

shown on left

I three-dimensional
radii also tightly
correlated with
local multiplicity
(right)

ATLAS-CONF-2016-027
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Ratio of Rout/ Rside
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I Rout couples to the lifetime directly where Rside does not

I small ratio Rout/Rside is indicative of “explosive” event

I steadily decreases with rising kT and is constant over rapidity

I marginally larger in central events

ATLAS-CONF-2016-027
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Transverse area and volume elements
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At low kT, the transverse area element RoutRside scales linearly with
multiplicity. The volume element det(R) scales linearly with multiplicity

at higher kT.
ATLAS-CONF-2016-027
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Volume scaling with Npart including color

fluctuations
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Volume scaling curvature with Npart is more modest when fluctuations
in the proton’s size are accounted for.

ATLAS-CONF-2016-027
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Rol cross term
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In central events on the forward side, there is strong evidence of a
positive Rol (4.8σ combined significance in 0–1% centrality)

I demonstrates breaking of boost invariance: z-asymmetry is
manifest in proton-going side.

I requires both longitudinal and transverse expansion in
hydrodynamic models

ATLAS-CONF-2016-027
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Conclusion

I Nuclear modification factor, as well as one- and three-dimensional
HBT radii, are measured in proton-lead collisions at 5 TeV.

I These measurements are presented differentially in centrality,
transverse momentum, and rapidity.

I Accounting for fluctuations in the nucleon-nucleon cross section is
seen to significantly affect the behavior of both the nuclear
modification factors and the source size.

I HBT Radii in central events show a decrease with increasing kT,
which is qualitatively consistent with collective expansion. This
trend is diminished in peripheral events.

I Variation of source over rapidity follows local multiplicity.

I Evidence for non-zero (positive) Rol on the proton-going side of
central events is observed.
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Comparison of RpPb with other collaborations
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RpPb as function of rapidity
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RpPb inclusive in centrality
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RCP central to peripheral ratio
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RCP as function of rapidity
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Introduction (Femtoscopy)
I Recent observations of angular correlations in p+Pb collisions

indicate signs of collective behavior – the so-called “ridge”.
I Femtoscopy is used to provide additional handles on the size,

shape, and evolution of the particle source.
I Femtoscopy uses the sensitivity of the momentum-space correlation

function to the source density function:

Ck(q)− 1 =

∫
∂Σ

d3r Sk(r)
(
|〈q|r〉|2 − 1

)
.

Here k = (p1 + p2)/2 is the average pair momentum and
q = (p1 − p2) is the relative momentum, and ∂Σ is the freeze-out
hypersurface of the source.

I C (q) is fit to a function and results are used to infer the length
scales of Sk(r), which are referred to as the HBT radii.

I For identical non-interacting bosons, Ck(q)− 1 is the Fourier
transform of the source density. These results use charged pions.
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Introduction (Femtoscopy)

I Results will focus on exponential fits to the Bose-Einstein part of
two-pion correlation functions CBE :

CBE (q) = 1 + e−‖Rq‖ .

The analysis is done as a function of qinv or with 3-dimensional q,
where R is a symmetric matrix.

I The full experimental correlation function is the Bowler-Sinyukov
form:

Cexp(q) = [(1− λ) + λK (qinv)CBE (q)] Ω(q) ,

where λ is a free parameter, K (qinv) accounts for Coulomb
interactions between the pions and Ω(q) represents the
non-femtoscopic background features of the correlation function.

I Mis-identified pions, coherent emission, weak decays contribute to
decrease in λ.
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Pion identification
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definition is used as a
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ATLAS-CONF-2016-027



31/40

(Jet fragmentation in opposite-sign Hijing)
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Wide correlation disappears in opposite-sign too when turning off hard
processes
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Jet fragmentation correlation

Common methods to account for this background include:

1. Using a double ratio C (q) = C data(q)/CMC (q) .
I Monte Carlo tends to over-estimate the magnitude of the effect,

which can skew the results significantly

2. Partially describing the background shape using simulation and
allowing additional free parameters in the fit.

I one might worry about additional free parameters biasing the fits

Here we measure the jet fragmentation in opposite-sign and use a
mapping derived in Pythia to predict the form in same-sign.
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Jet fragmentation correlation

A data-driven method is developed to constrain the effect of hard
processes. Fits to the opposite-sign correlation function are used to
predict the fragmentation correlation in same-sign. This has its own
challenges.

1. Resonances appear in the opposite-sign correlation functions
I mass cuts around ρ, KS , and φ
I cut off opposite-sign fit below 0.2 GeV

2. Fragmentation has different effect on the opposite-sign correlation
function than on the same-sign

I a mapping is derived from opposite- to same-sign using simulation
I opposite-sign fit results in the data are used to fix the background

description in the same-sign
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Jet fragmentation correlation

The jet fragmentation is modeled as a stretched exponential in qinv:

Ω(qinv) = 1 + λinvbkgde
−|R inv

bkgdqinv|
αinv
bkgd

In 3D it is factorized into components parallel and perpendicular to jet
axis

Ω(q) = 1 + λoslbkgde
−|Rout

bkgdqout|
αout
bkgd−|Rsl

bkgdqsl|
αsl
bkgd

with qsl =
√

q2
side + q2

long.

These parameters are studied in Pythia, and a mapping from
opposite-sign to same-sign values is derived.
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Jet fragmentation mapping
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model R±±inv as proportional to R+−
inv (right). Then with constant fixed,

do kT-dependent comparison of background amplitude in ±± and +−
(left). Does not work perfectly but does increasingly well at high kT,
where the effect is relevant.
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Example fit to invariant correlation function
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Example fit to 3D correlation function
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Fit appears poor along qout axis, but works well globally. Note that the
qout axis is right where the tracks have the same outgoing angle.
Moving just 1 or 2 bins away helps significantly.



39/40

Systematics example (Rinv)
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The above plots show the contributions of each systematic uncertainty
on Rinv as a function of kT and Npart.
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Systematics example (λinv)
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The above plots show the contributions of each systematic uncertainty
on λinv as a function of kT and Npart.
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