Discussion on Multiple Parton Interactions

Cyrille Marquet
Peter Steinberg

We are well-accustomed to multiple interactions in collisions of nuclei (and consequences on final state, i.e. hydrodynamization)

HI and HEP communities are more and more interested in consequences of >1 partonic interactions even in pp collisions

How important are (fluctuating) spatial distributions for understanding properties of pp collisions

Figure T. Sjöstrand

"standard" MPI
(is there 2D evolution?)

DIPSY evolution

 in transverse spaceInitialization of hydro

How do we disentangle the (possibly simultaneous) role of these different scenarios?

Questions (instead of summary)

 (continuing Andreas' discussion!)- How to move from MC tuning to extraction of physical parameters for the transverse structure of hadrons (including errors)?
- Can one constrain generalised pdf $(\mathrm{g}(\mathrm{x}, \mathrm{b}))$ and multiparton pdf s
- How does re-scattering modify (de-correlate) low- p_{T} jetlike correlations ?
- Can "elementary" string interactions explain collective bahavior in small systems ?

how to distinguish Hydro and Pythia

H. BELLO,
G. BENCEDI, E. CUAUTLE, R. Diaz, S. IGA, A. ORTIZ, G. PAIĆ

Multiplicity and MPI in Pythia

 Limited increase with multiplicity at high multiplicity, while mean pt grows with multiplicity

color reconnection till high pt

The prediction of pythia spectra for the case of no CR with the predicitons for two CR modes for $\mathrm{z}=\mathrm{Nch} /<\mathrm{Nch}>=$ 0.5 and >5 and for the min bias case. The result suggest that with multiplicity the color reconnection increases (ref.3.)

The very low multiplicity events $z<0.5$ could be used as the No CR case in data
 analysis

Color reconnection tuning on the mean pt at 7 TeV

Comparison with Hydro inspired EPOS3

Z= Nch/ <Nch>

conclusions

- The differentiation between hydro and Pythia occurs after 2-3 GeV/c. Should be easy to investigate with experimemts
- Interesting behavior at low multiplicity

hard MPIs = double parton scattering (DPS)

for instance: 4-jet production coming from a double hard scattering of two partons in each incoming hadron
there is a kinematical domain in which this is as important as the leading-twist process of 4 -jet production in one hard scattering

QCD factorization not proven (probably does not apply) yet used in all phenomenological studies parameters (like $\sigma_{\text {eff }}$) need to be tuned to unphysical values

soft MPI = underlying event

the most popular approach in $p+p$: event generators like PYTHIA

$$
\begin{aligned}
& \text { in } A+A \text { or high-multiplicity } p+p \\
& C G C=\text { first-principle approach if } Q s \text { is large enough }
\end{aligned}
$$

Hard MPI-Soft MPI interplay ?

when triggering on a hard event, does one bias the distribution of the soft particles by selecting only rare wavefunction configurations of the colliding particles
if so, how to calculate this effect in QCD ?

Important for $\mathrm{p}+\mathrm{A}$: can we correct for this effect when measuring $\mathrm{R}_{\mathrm{pPb}}$?
ALICE: hybrid method measures correction factors in ZDC-selected bins, under assumptions that different regions in eta are proportional to $\mathrm{N}_{\text {part }}$ or $\mathrm{N}_{\text {coll }}$ scaling.

ATLAS: calculates "centrality bias" corrections, restores $\mathrm{N}_{\text {coll }}$ scaling to Z, W

ATLAS observed centrality-dependent splitting of nuclear modification factor in $\mathrm{p}+\mathrm{Pb}$

Energy conservation in presence of hard process can influence soft processes,
 bias centrality measure

