Realistic simplified dark matter models

Stefan Vogl

based on
JHEP 1602 (2016) 016 [arxiv:1510.02110]

in collaboration with
F. Kahlhoefer, K. Schmidt-Hoberg and T. Schwetz
How do we search for dark matter at the LHC?
Excess of events in high energy tail
What does an excess (the absence of an excess) of events tell us?

average physicist: not much

We need:

- framework for interpretation of LHC searches
- framework for interpretation of different experiments
- provide guide to relevant regions of the parameter space
- ...

⇨ models for dark matter
Models

UV motivated:
- well motivated DM candidates (neutralino, gravitino, Kaluza-Klein dark matter ...)
- everything calculable
- most signatures/constraints not related to DM

model independent: EFT
- just keep DM, integrate everything else out
- few parameter, easy comparison with other observables
- suppression scale \approx momentum transfer \Rightarrow unreliable at LHC
Simplified models

- keep dark matter particle **and** the mediator(s) between dark matter and the Standard Model
- possible ways to think about this:
 - simplification of more complex UV model
 - could be a viable model in itself (dark matter connected to SM by $U(1)_{B-L}$ etc)
- many possibilities
 scalar dark matter, fermionic dark matter, vector dark matter, scalar mediators, fermionic mediators ...

S-channel vector mediator

- fermionic dark matter interacts with SM fermions via a Z' boson

$$\mathcal{L} = - \sum_{f=q,l,\nu} Z'_{\mu} \bar{f} \left[g_f^V \gamma_{\mu} + g_f^A \gamma_{\mu} \gamma^5 \right] f - Z'_{\mu} \bar{\psi} \left[g_{DM}^V \gamma_{\mu} + g_{DM}^A \gamma_{\mu} \gamma^5 \right] \psi .$$

LHC benchmark model: ATLAS and CMS report limits on this model.

S. Vogl (MPIK Heidelberg)
Z' mediators: questions

Fermionic dark matter interactions with SM fermions are mediated by a Z' boson

\[\mathcal{L} = - \sum_{f=q,l,\nu} Z'^\mu \bar{f} \left[g_f^V \gamma_\mu + g_f^A \gamma_\mu \gamma^5 \right] f - Z'^\mu \bar{\psi} \left[g_{DM}^V \gamma_\mu + g_{DM}^A \gamma_\mu \gamma^5 \right] \psi . \]

- Where does this model come from?
- Are results obtained in simplified model reliable?
- Which region of the parameter space are interesting?
- Are there relations between different couplings/parameters?
- ...

S. Vogl (MPIK Heidelberg)

TeVPA 2016, CERN
Let’s get out the toolbox
Perturbative Unitarity

- we know from SM that massive vector boson lead to issues with unitarity
- partial wave analysis of the amplitude

\[M_{ij}^J(s) = \frac{1}{32\pi} \beta_{if} \int_{-1}^{1} d\cos\theta \, d_{\mu\mu'}^J(\theta) \, M_{ij}(s, \cos\theta) \]

with \(\beta_{if} \) : kinematical factor and \(d_{\mu\mu'}^J(\theta) \) : Wigner d-function

- perturbative unitarity requires

\[0 \leq \text{Im}(M_{ii}^J) \leq 1, \quad |\text{Re}(M_{ii}^J)| \leq \frac{1}{2}. \]

- check validity of model
DM side: DM DM → DM DM

- Longitudinal component of vector couples proportional to $g_A^f m_f / m_{Z'}$
- Perturbative unitarity is violated unless

 $$m_f \lesssim \sqrt{\frac{\pi}{2}} \frac{m_{Z'}}{g_A^f}$$

- DM can not be arbitrary heavy compared to mediator (or is arbitrarily weakly coupled)
DM side: DM DM → $Z'Z'$

- matrix element for DM DM → $Z'Z'$ diverges in high energy limit

$$\mathcal{M} \propto \frac{(g_{DM}^A)^2 \sqrt{s} m_{DM}}{m_{Z'}^2}$$

- theory only valid up to scale $\sqrt{s} < \frac{\pi m_{Z'}^2}{(g_{DM}^A)^2 m_{DM}}$

- thermal dark matter typically requires g_{DM}^A of $\mathcal{O}(1) \Rightarrow$ dangerous \sqrt{s} typically low

- need new physics to unitarize vector boson
A dark Higgs

- need to restore perturbative unitarity \Rightarrow Higgs mechanism
- break $U(1)'$ with scalar singlet S
- Lagrangian is given by (Majorana dark matter)

$$\mathcal{L}_{DM} = \frac{i}{2} \bar{\psi} \phi \psi - \frac{1}{2} g_{DM}^{A} Z'_{\mu} \bar{\psi} \gamma^{5} \gamma_{\mu} \psi - \frac{1}{2} y_{DM} \bar{\psi} (P_{L} S + P_{R} S^*) \psi,$$

$$\mathcal{L}_{S} = [(\partial^{\mu} + i g_{S} Z'_{\mu}) S]^\dagger [(\partial_{\mu} + i g_{S} Z'_{\mu}) S] + \mu_{S}^{2} S^\dagger S - \lambda_{S} (S^\dagger S)^{2}$$

side remark: vector interaction don’t generate these problems ($m_{Z'}$ from Stueckelberg mechanism)
A look at the SM side: gauge invariance

- Fermionic dark matter interactions with SM fermions mediated by Z' boson

$$\mathcal{L} = - \sum_{f=q,l,\nu} Z'_{\mu} \bar{f} \left[g_f^V \gamma_\mu + g_f^A \gamma_\mu \gamma^5 \right] f - Z'_{\mu} \bar{\psi} \left[g_{\text{DM}}^V \gamma_\mu + g_{\text{DM}}^A \gamma_\mu \gamma^5 \right] \psi .$$

- A closer look at the SM gauge structure:

$$g_f^V = \frac{1}{2} g' (q_{f_R} + q_{f_L}), \quad g_f^A = \frac{1}{2} g' (q_{f_R} - q_{f_L})$$

- General Z' couplings break SM gauge invariance (SM Yukawa terms)
SM side: gauge invariance

- need a consistent picture for $SU(2) \times U(1) \times U(1)'$ breaking

\[g_f^A = \frac{1}{2} g' (q_{fR} - q_{fL}) \text{ breaks gauge invariance} \]

\[q_H = q_{qL} - q_{uR} = q_{dR} - q_{qL} = q_{eR} - q_{\ell L} \text{ restores it} \]

- leads to following Lagrangian:

\[\mathcal{L}'_{SM} = - \sum_{f=q,\ell,\nu} g' Z'^\mu [q_{fL} \bar{f}_L \gamma_\mu f_L + q_{fR} \bar{f}_R \gamma_\mu f_R] \]

\[+ \left[(D_\mu H)\dagger (-i g' q_H Z'_\mu H) + \text{h.c.} \right] + g''^2 q_H^2 Z'^\mu Z'_\mu H\dagger H \]

- Z' interacts with all generations of quarks and with leptons
 \Rightarrow stringent constraints from searches for dilepton resonances

- off-diagonal mass term $\delta m^2 Z_\mu Z'_\mu \Rightarrow$ electroweak precision tests
Spot the difference: axial(DM)-axial(SM)

- stringent constraints from EWPTs and dilepton resonance
- naive calculations inconsistent in substantial parts of parameter space
- modified thermal expectation
Vector interactions: loop induced effects

- for $g_f^A = 0$ SM Higgs remains uncharged and $g_l \ll g_q$ possible
- kinetic mixing $-\frac{1}{2} \sin \epsilon F'/\mu \nu B_{\mu \nu}$ allowed at tree level
- quarks charged under $U(1)_Y$ and $U(1)'$ generate kinetic mixing at 1-loop

▶ expect:

$$\epsilon(\mu) = \frac{e g_q^\nu}{2 \pi^2 \cos \theta_W} \log \frac{\Lambda}{\mu} \simeq 0.02 g_q^\nu \log \frac{\Lambda}{\mu}$$
Limit on loop induced kinetic mixing

- relevant limits from loop induced coupling to leptons
- di-jet resonance
- different searches complementary

\[g_{DM}^A = 1, \ g_q^V = 0.25 \]

- LHC dijet resonances
- LHC monojets
- Perturbative unitarity violation
- Dilepton resonances
- DM overproduction
- Electroweak precision tests

S. Vogl (MPIK Heidelberg)
Conclusion

- simplified models are a useful tool for DM/collider phenomenology
- "naive" simplified models can violate gauge invariance and perturbative unitarity
- interpretation needs care
- interesting and powerful new signatures in realistic models