# Search for Hidden Particles (SHiP): an experimental proposal at the SPS

ship.web.cern.ch/ship Mario Campanelli (UCL) On behalf of the ShiP collaboration



## The Standard Model and beyond

- All SM particles have been directly observed so far (apart from anti- $v_{\tau}$ )
- Despite some anomalies, no compelling evidence of new physics found so far
- Higgs mass points to a meta-stable universe
- The SM could be valid to the Plank scale
- Naturalness only a problem if we assume new particles between EW and Plank scales
- Apart from naturalness, we do not understand:
  - Barion Asymmetry of the Universe
  - Dark Matter (indications are for cold, non-barionic)
  - The pattern of masses and mixings
  - Inflation



- Limits to masses of new particles being pushed in the TeV scale by the LHC.
  - → "protection" against a small Higgs mass getting weaker

### The "hidden sector" approach to new physics

 Searches for new particles at the LHC so far unsuccessful, maybe new physics has a very small coupling?

If an additional, weakly interacting, term to the Lagrangian could lead to particles very

difficult to observe, but contributing to dark matter.



# Production Detection SM + X ----- SM SM

#### The vMSSM

T.Asaka, M.Shaposhnikov, PL B620 (2005) 17 M.Shaposhnikov Nucl. Phys. B763 (2007) 49



Particle content of SM made symmetric by adding 3 HNL:  $N_1$ ,  $N_2$ ,  $N_3$ 

With  $M(N_1)$  ~ few KeV, it is a good DM candidate (or DM can be generated outside of this model through decay of inflaton)

With  $M(N_2, N_3) \sim GeV$ , could explain Barion Asymmetry of Universe (via bariogenesis), and generate neutrino masses through see-saw.

# HNL production and decay modes

Interaction with Higgs vev leads to mixing with active neutrinos, resulting in a behaviour similar to oscillation to the HNL and back into a virtual neutrino, that

produces a muon and a W ( $\rightarrow$  hadrons, eg pions)

Exact branching fractions depend n flavor mixing

Due to small couplings, ms lifetimes, decay paths O(km)







| Decay mode                                           | Branching ratio |
|------------------------------------------------------|-----------------|
| $N_{2,3} \rightarrow \mu, e + \pi$                   | 0.1 – 50 %      |
| $N_{2,3} \rightarrow \mu$ -/e- + $\rho$ <sup>+</sup> | 0.5 - 20%       |
| $N_{2,3} \rightarrow \nu + \mu + e$                  | 1 – 10%         |

# How to explore these phenomena? an experiment in practice

Use protons from CERN's SPS: 500 kW is 4x1E13 protons/7 s ->2E20 in 5y Slow (ms  $\rightarrow$  1s) and uniform extraction to reduce detector occupancy and combinatorics

- HS particles produced by mesons (mainly charm) decays; need to absorb all SM decay products to minimise BG
  - → heavy material thick target, with wide beam to dilute energy deposition (different from neutrino facility)
- Muons cannot be absorbed by target
  - → active muon shield
- Long vacuum (or helium) decay tunnel away from external walls to minimise rescattering of muons and neutrinos close to detector
- Hidden sector detector with good PID and resolutions
- An additional emulsion detector for tau neutrino studies

# The SHiP proposal



- Proposal for a new experiment at the CERN SPS accelerator:
  - hidden sector detector
  - Emulsion spectrometer for DM searches and  $\nu_\tau$  235 experimentalists from 45 institutes and 15 countries + CERN
- Technical Proposal submitted in April last year (arXiv:1504.04956)
- Physics Proposal signed by 80 theorists (arXiv:1504.04855)
- SPSC has given the green light to the next stage, a Comprehensive Design study, to be submitted in about 3 years
- · ShiP recommended by the CERN research board

### The SHiP detector



### A zero-background experiment







| Background source        | Stat. weight | Expected background (UL 90% CL) |
|--------------------------|--------------|---------------------------------|
| $\nu$ -induced           |              |                                 |
| $2.0$                    | 1.4          | 1.6                             |
| $4.0$                    | 2.5          | 0.9                             |
| p > 10  GeV/c            | 3.0          | 0.8                             |
| $\overline{ u}$ -induced |              |                                 |
| $2.0$                    | 2.4          | 1.0                             |
| $4.0$                    | 2.8          | 0.8                             |
| $p > 10  \mathrm{GeV/c}$ | 6.8          | 0.3                             |
| Muon inelastic           | 0.5          | 4.6                             |
| Muon combinatorial       | _            | <0.1                            |
| Cosmics                  |              |                                 |
| p < 100  GeV/c           | 2.0          | 1.2                             |
| $p>100~{ m GeV/c}$       | 1600         | 0.002                           |

## Sensitivity to HNL



Just an example; many more recent papers and accessible regions of phase-space:

Drewes et al. (2016) Hernandez et al. (2016) Hernandez (2015) Etc...

New development: B-L gauge symmetry model (enhanced HNL production)

(Batell et al. 1604.06099)



# Sensitivity to dark photons

- Decays of  $\pi^0 \rightarrow V\gamma$ ,  $\eta \rightarrow V\gamma$ ,  $\omega \rightarrow V\pi^0$
- Proton bremsstrahlung and parton bremsstrahlung above  $\Lambda(QCD)$
- Decay into pair of SM particles
- SHiP will have a unique sensitivity for low couplings







### Hidden scalars

- Can mix with the SM Higgs, with angle θ
- Mainly produce in penguin B and K decays
- Displaced vertex for decays into pairs of SM particles (e+e-, μ+μ-, π+π-, K+K-, ....)



## Neutrino physics



- An OPERA-like tau neutrino emulsion detector
- Current status of tau neutrino measurements:
  - DONUT observed 9 events (from charm), OPERA 5 events (from oscillations)
- Ship can increase by 200 the current tau neutrino sample, discover tau antineutrinos, measure structure functions and constrain strange PDFs (with  $v_u$ )



# Light dark matter

Theoretically, DM could be as light as 10-22 eV, but most of the searches focus on WIMPs with masses above 10 GeV: little sensitivity below

However, sub-GeV DM predicted by SUSY, hidden sector, extra dimension models...



#### Direct detection of DM in SHiP

 Light dark matter can be produced in a beam dump, as a decay product eg. of a dark photon

LDM particles detected from their scattering on the emulsion spectrometer

Studies still ongoing
 (need further reduction of neutrino BG), but sensitivity goes beyond relic density in a minimal hidden photon model



#### SHiP at CERN and timeline



#### Main changes compared with last-year MTP

From Fabiola's June presentation to the CERN staff:

Funding for neutrino activities, through CERN Neutrino Platform, now covers commitments to US LBNF project described in the previous MTP (~ 20 MCHF were missing). No new commitments made.

Beam dump facility at the North Area: small funding included in the accelerator R&D budget to complete key technical feasibility studies in time for the ESPP.

SHiP experiment recommended by the Research Board to prepare comprehensive design study as input to the ESPP

#### ☐ future opportunities of diversity programme (new): "Physics Beyond Colliders" Study Group

2016 2017 2018 2019 2020 2021 2022 2023 Accelerator schedule 2015 2024 2025 2026 2027 LHC Run 2 Run 3 Run 4 SPS Detector R&D, design and TDR TP CwB Data takin Milestones Integration Facility Target - Detector hall - Beamline Junction (WP1 Civil engineering CwB: Infrastructure Commissioning with beam Beamline R&D, design and TDR Installation ← Production – R&D, design and TDR Target complex Installation Target R&D, design and TDR + prototyping nstallatio

talk from A. Golutvin at the PBC kick-off meeting

Addendum to the TP: SPSC-P-250

Figure 4.2: New baseline project schedule for the facility and SHiP experiment with WP1 in LS3 and adapted to latest accelerator schedule MTP 2016-2020 V1.



Figure 4.3: Overall cost profile for the construction of the facility in MCHF in the new baseline schedule with WP1 in LS3, as shown in Figure 4.2.

#### Conclusions

- Light hidden-sector particles can solve many problems of the SM, and SHiP is the only dedicated detector to discover them
- Two complementary detectors:
  - Long decay volume with spectrometer for long-lived particles
  - Emulsion spectrometer for neutrinos and direct DM
- Despite its uniqueness and innovative potential, it relies on existing technologies
- Unique discovery potential due to design and SPS characteristics; complementary to high-energy LHC searches