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Overview

● Why global fits?
● GAMBIT overview
● Simple examples
● A few fit results
● Summary 
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Why global fits?

Ben FarmerOskar Klein Centre, Stockholm University

● Lots of theories of TeV scale 
physics

● For each theory, a 
parameter space of varying 
phenomenology

● What new physics scenarios 
are preferred / ruled out? - 
Compare to data!
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Why global fits?

● In/out cuts based on 95% confidence limits are 
useful to get a quick heuristic picture.

● But representing the results from higher-
dimensional scans can become tricky:

● Count number of surviving points, projected onto 
some plane? (Strange pseudo-Bayesian approach; 
interpretation unclear)

● “Profile” binned surviving points, or just project 
them on a plane? (Strange pseudo-frequentist 
approach; interpretation a bit clearer)

● In either case can’t tell much more than that yes, 
some points survive all the cuts. But they may not 
have survived a more sophisticated treatment!

Ben FarmerOskar Klein Centre, Stockholm University

Cline, Kainulainen, Scott & 
Weniger, PRD, 1306.4710

● But ultimately, we want to make valid statistical inferences.

● To do this, we must perform full likelihood calculations, and sample 
parameter spaces in a statistically valid way.
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But it is a hard problem

● Even for a comprehensive in/out analysis, the 
problem is multi-faceted:
● Pick a model

● Compute predictions for all physical observables of interest

● Compare these predictions to experimental limits
● Sometimes limits already exist directly on the relevant quantities for a 

model.
● Usually need to recast limits

● May involve numerically intensive simulations of specific experiments, e.g. 
simulating LHC collisions, neutrino events (IceCube), gamma ray events (Fermi-LAT), 
WIMP-nucleon scattering. 

● Limits often dependent on background model assumptions (e.g. dark 
matter halo models, cosmology, simplified model assumptions). Need to 
treat these assumptions consistently across likelihoods.

Ben FarmerOskar Klein Centre, Stockholm University
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But it is a hard problem

● For full statistically valid global fit, even harder
● Need likelihood calculations for many experiments – can be 

numerically intensive

● Need computations at many (millions - hundreds of millions) 
of model points, for moderately complex models (e.g. MSSM7-
30)

A lot of effort just for one model family.

Ben FarmerOskar Klein Centre, Stockholm University
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Organisation is essential

● It requires a huge amount of manpower to prepare 
analyses of this kind even for one model class (e.g. 
MSSM).

● Need to reuse as many calculations and as much 
“book-keeping” code as possible.

Ben FarmerOskar Klein Centre, Stockholm University
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Key GAMBIT design points
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● Reuse calculations to the maximum theoretically permissible 
extent

● Graph-based dependency resolution for run-time “plug and 
play”

● Keep calculations as modular as possible so that any piece 
can be easily “swapped out” for an alternate calculation. 

● Seamless integration of new calculations as they become 
available (minimise “hacking” of existing code).
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Physics modules
● DarkBit – dark matter observables (relic density, direct +indirect 

detection)
● ColliderBit – collider observables inc. Higgs + SUSY searches from 

ATLAS, CMS + LEP
● FlavBit – flavour physics inc. g − 2, b → sγ, B decays (new channels, 

angular obs., theory uncerts, LHCb likelihoods)
● SpecBit – generic BSM spectrum object, providing RGE running, 

masses, mixings, etc via interchangeable interfaces to different RGE 
codes

● DecayBit – decay widths for all relevant SM & BSM particles
● PrecisionBit – SM likelihoods, precision BSM tests (W mass, ∆ρ etc)

Each consists of a number of module functions that can have
dependencies on each other.

+ScannerBit: manages stats, sampling and optimisation

Modular structure

Ben FarmerOskar Klein Centre, Stockholm University
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Example dependency graphs
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Mix and match backends
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Other tools:

CMake build system to organise compilation of many tools and 
modules. 

Scanners: MultiNest, Diver (diff. evolution), t walk (population MC), 
GreAT (MCMC), with uniform interface

Parallelisation: Mixed  mode MPI + openMP, mostly automated

Backends: dynamic loading of C++ classes from backends (BOSS)

POSIX signal handling: for safe early shutdown/resuming

Multi-format output: Currently ASCII and HDF5, but extensible.

Oskar Klein Centre, Stockholm University Ben Farmer
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Comparison of tools
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Benchmarking
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Benchmarking
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Relic Density                                       Velocity-averaged annihilation cross section
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Benchmarking
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SI cross section                                    
  

SD cross section                                   
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Scalar singlet (“Higgs portal”) dark matter
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Scalar singlet (“Higgs portal”) dark matter
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→ Apply all constraints consistently
→ ...varying SM parameters within their allowed range (Higgs mass, Top mass)
→ ...and nuclear parameters (quark content of nucleons)
→ ...future scans: halo parameters too.

Scalar singlet (“Higgs portal”) dark matter

Oskar Klein Centre, Stockholm University Ben Farmer
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Low mass region

Cline, Kainulainen, Scott & Weniger, PRD, 1306.4710

mS ~ mh /2, resonant 
annihilation

Too much DM

Too little DM

mS < mh / 2
h→SS allowed, 
contributes to 
Higgs invisible 
width, 
constrained by 
LHC LUX (2013)

Constraints:
- IC79 (nulike)
- FermiLAT dwarfs (gamlike)
- LHC run1 Higgs inv. width (1306.2941)
- DM relic density (Planck)
- Xenon2012+LUX2013 (DDCalc)
- nuisance parameter constraints (nuclear, 
SM, DM velocity distribution (trunc. MB))
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High mass region

Cline, Kainulainen, Scott & Weniger, PRD, 1306.4710

Previous slide 
(low mass)
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SI WIMP-nucleon cross section

Cline, Kainulainen, Scott & Weniger, PRD, 1306.4710

λhS > 1
(edge of scan)
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Summary

● GAMBIT first publications in preparation, with simultaneous code release.

● Global fits to many models for the first time

● Better global fits to familiar ones

● Highly modular, usable and extendable public code

● Faster, more complete and more consistent theory explorations + 
experimental analysis prototyping

● In preparation: EW-scale MSSMs, CMSSM± (NUHM, etc), Scalar Singlet, 
DarkBit, ColliderBit, FlavBit, Spec+Decay+PrecisionBits, GAMBIT 
framework, ScannerBit

Thank you!

Oskar Klein Centre, Stockholm University Ben Farmer
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