Dark Photon Searches @ LHCb

Wei Xue

Sep 13, 2016 TeVPA

Dark Matter Search Why not LHCb?

Mono-jet event from ATLAS (credit: CERN courier)

LHCb

Outline

- why LHCb
- introduction to dark photon
- dark photon search from meson decay (1509.0676, PRD 2015, P. Ilten, J. Thaler, M. Williams, **WX**)
- dark photon search from inclusive di-muon (1603.08926, Accepted by PRL, P. Ilten, Y. Soreq, J. Thaler, M. Williams, WX)
- conclusion

Why LHCb 1)

ECAL HCAL SPD/PS

RICH2 M1

Magnet

RICH1

M4 M5

20m

z

M2 M3

- no pile-up
- good vertexing :VELO detector (10 μm)

Why LHCb 2)

- Run 3 triggerless readout:
 - removing the first-level hardware trigger
 - realtime calibration
 - no hardware limited only disk space limitation
 - triggerless readout opens new possibilities for particle physics search in Run3
 - we should test it right now!

Dark Sector

dark matter implies a hidden sector, neutral under the standard model forces

Standard Model matter fields, Higgs & g,W,Ζ, γ

• e.g. indirect detection

Dark Sector

dark matter implies a hidden sector, neutral under the standard model forces

Standard Model matter fields, Higgs & g,W,Z, γ

dark matter & dark force

• e.g. indirect detection

Dark Photons

• U(1)' dark photon can kinetically mix with photon

Standard Model matter fields, Higgs & A A' & A' & dark matter & dark force g,W,Z,
$$\gamma$$

$$\frac{\epsilon}{2}F'_{\mu\nu}F^{\mu\nu}$$

- effective Lagrangian $\mathcal{L} = -\frac{1}{4}F'_{\mu\nu}F'^{\mu\nu} + \frac{1}{2}m^2_{A'}A'_{\mu}A'^{\mu} + \epsilon e A'_{\mu}J^{\mu}_{\rm EM}$
- focusing : mass range of $m_{A^{'}}$ (\in MeV 10 GeV) $\epsilon^{2} \sim$ 10^{-6}, 10^{-12}

Dark Photons

• U(1)' dark photon can kinetically mix with photon

$$\frac{\epsilon}{2}F'_{\mu\nu}F^{\mu\nu}$$

• effective Lagrangian

$$\mathcal{L} = -\frac{1}{4} F'_{\mu\nu} F'^{\mu\nu} + \frac{1}{2} m_{A'}^2 A'_{\mu} A'^{\mu} + \epsilon e A'_{\mu} J^{\mu}_{\rm EM}$$

• focusing : mass range of $m_{A'}~(~\in MeV$ - 10 GeV) $\epsilon^2 \sim 10^{-6},~10^{-12}$

Dark Photon Production in collider

9

Whenever a photon is produce (<u>-</u> photon can also be produced, I different coupling and mass

- A. Bremsstrahlung
- B. Drell-Yan like
- C. Meson decay $(\pi^0 \rightarrow \gamma \ e^+ \ e^-)$

Resonant Search

- A' $\rightarrow e^+ e^-$, A' $\rightarrow \mu^+ \mu^-$
- background from off-shell photon $S/\sqrt{B} \sim \epsilon^2 \sqrt{N}$

LHCb searches

Very Promising Channel: Charm Meson

- decay to photon (dark photon)
 - Large Branching ratio (phase space suppression of $D^{*^0} \rightarrow D^0 \pi^0$)
 - clean decay modes
- MeV decay width well reconstructed, to reduce backgrounds

 $D^{0} \qquad K^{+}, \pi^{+} \\ K^{-}, \pi^{-} \\ D^{0*} \qquad A'/\gamma \qquad e^{-} \\ e^{+} \\ K^{-} \\ e^{-} \\ e^{-}$

D*(2007)⁰

 $I(J^P) = \frac{1}{2}(1^-)$ I, J, P need confirmation.

Mass $m = 2006.96 \pm 0.10$ MeV $m_{D^{*0}} - m_{D^0} = 142.12 \pm 0.07$ MeV Full width $\Gamma < 2.1$ MeV, CL = 90%

 $\overline{D}^*(2007)^0$ modes are charge conjugates of modes below.

<i>D</i> *(2007) ⁰ DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)	
$D^0 \pi^0$	(61.9 ± 2.9) %	43	
$D^0\gamma$	(38.1±2.9) %	137	

D^{*0} Production

- How many D^{*0} in LHCb Run3 (15 fb⁻¹)? ~ 5×10^{12} D^{*0} \rightarrow D⁰ + γ (PYTHIA simulation)
- How many π^0 in NA48/2? ~10¹⁰

Resonant Search

Displaced D⁰ and Prompt A'

 How do we know e⁺e⁻ from D0^{*} decay? reconstruct e⁺ e⁻ D⁰ to D^{0*}

 $-50 \text{ MeV} < \Delta m_D^{\text{reco}} - \Delta m_D < 20 \text{ MeV}$

invariant mass constraint
 D⁰ e⁺ e⁻ inv mass = m(D^{0*})
 the decay width of D0* ~ MeV
 matters here

Displaced Search

- In addition to D⁰ giving a displaced decay, A' can give displaced decay
- good vertex resolution
 ~ 10 μm
- small e+e- opening angle
 ~ 3 mrad
- Large boost factor

 $\ell_{A'} \simeq 1.6 \text{ cm} \left(\frac{\gamma}{10^2}\right) \left(\frac{10^{-8}}{\epsilon^2}\right) \left(\frac{50 \text{ MeV}}{m_{A'}}\right)$

nearly background free

Displaced Search

- In addition to D⁰ giving a displaced decay, A' can give displaced decay
- good vertex resolution
 ~ 10 μm
- small e+e- opening angle
 ~ 3 mrad
- Large boost factor $\ell_{A'} \simeq 1.6 \text{ cm} \left(\frac{\gamma}{10^2}\right) \left(\frac{10^{-8}}{\epsilon^2}\right) \left(\frac{50 \text{ MeV}}{m_{A'}}\right)$
- nearly background free

Comparison to Other Experiments

Can we combine all the

- The channels we can use
 - Bremsstrahlung /Drell-Yan process

- meson decays
- Challenge 1: what is the signal rate? many potential sources of dark photons with uncertain production rates

inclusive dimuon search

• dark photon mix with photon and also vector mesons

• Background from EM process μ^+ p p pp

Background and Signal Rate

• amplitude generating dark photon

$$i\mathcal{M}_{X\to YA'} = i\epsilon e \langle Y|J^{\mu}_{\rm EM}|X\rangle\epsilon(k)_{\mu}$$

• amplitude generating off-shell photon

$$i\mathcal{M}_{X\to Y\ell^+\ell^-} = ie^2 \langle Y|J^{\mu}_{\rm EM}|X\rangle \frac{-ig_{\mu\nu}}{(k_1+k_2)^2} \bar{u}(k_1)\gamma^{\nu}v(k_2)$$

• ratio (form factor are cancelled)

$$\frac{\mathrm{d}\sigma_{pp\to XA'\to X\mu^+\mu^-}}{\mathrm{d}\sigma_{pp\to X\gamma^*\to X\mu^+\mu^-}} = \epsilon^4 \frac{m_{\mu\mu}^4}{(m_{\mu\mu}^2 - m_{A'}^2)^2 + \Gamma_{A'}^2 m_{A'}^2}$$

Data driven method

• the continuous dimuon spectrum that LHC have is the background.

• per mass bin

Measured Di-muon Spectrum

Prompt Search

- "good" Background proportional to EM currents Mesons, FSR/DY
- "bad" Background
 - Beith-Heitler, subdominant, small photon PDF

- mis-identified pions (fake rate $\sim 10^{-3}$):
 - $B^{\pi\pi}$ two pions are misidentified
 - $B^{\pi\mu}$ one pion is misidentified and one real muon
 - subtract them in a data-driven way (same-sign dimuon)

selections:

- $2 < \eta(\mu^{\pm}) < 5$
- *p*(*μ*[±])>10GeV
- $p_{T}(\mu^{\pm}) > 0.5 \text{GeV}$
- *p*_T(*A*')>1.0GeV
- μ isolation: $m_{A'} > m_{\phi} \sim 1 \text{ GeV}$

Possible improvement

Conclusion

- VELO
- Triggerless readout
- dark photon search at LHCb
 - resonant search and displaced search
 - $D^{0*} \rightarrow D^0 + \gamma$ and inclusive search
 - the (di-muon) data-drive method can be applied to other experiments
 - explore the new territory with current or future collider. the next decade of collider results may give us the first step to understand the hidden sector
- LHCb search for new physics

Conclusion

- VELO
- Triggerless readout
- dark photon search at LHCb
 - $D^{0*} \rightarrow D^0 + \gamma$ and inclusive search
 - prompt search and displaced search
 - explore the new territory with current or future collider. the next decade of collider results may give us the first step to understand the hidden sector
- LHCb search for new physics

Backup Slides

Introduction

[JINST 8 (2013) P04022]

Displaced Search Beam Dump Experiments

	E_0		$N_{ m el}$		$L_{\rm sh}$	$L_{\rm dec}$	N7	N 7
	target	[GeV]	$\#_{ m electrons}$	Coulomb	[m]	[m]	$N_{\rm obs}$	N _{95%up}
KEK	$^{183.84}_{~~74}\mathrm{W}$	2.5	1.69×10^{17}	$27 \mathrm{mC}$	2.4	2.2	0	3
E141	$^{183.84}_{~74}\mathrm{W}$	9	2×10^{15}	$0.32 \mathrm{mC}$	0.12	35	1126^{+1312}_{-1126}	3419
E137	$^{26.98}_{13}\text{Al}$	20	1.87×10^{20}	30 C	179	204	0	3
Orsay	$^{183.84}_{~74}\mathrm{W}$	1.6	2×10^{16}	3.2 mC	1	2	0	3
E774	$^{183.84}_{74}\mathrm{W}$	275	5.2×10^{9}	0.83 nC	0.3	2	0^{+9}_{-0}	18

Photon-Dark Photon Mixing

- photon mixes with dark photon
- vector mesons also mix with dark photon
- the off shell photon current includes all the possible mixings

Resonant Search

- A' $\rightarrow e^+ e^-$, A' $\rightarrow \mu^+ \mu^-$
- background from off-shell photon S/ $\sqrt{B} \sim \epsilon^2 \sqrt{N}$

 e^+

 e^{-}

Resonant Search

- A' $\rightarrow e^+ e^-$, A' $\rightarrow \mu^+ \mu^-$
- background from off-shell photon $S/\sqrt{B} \sim \epsilon^2 \sqrt{N}$

Displaced search Background

• pre-module :

 $D^{0*} \rightarrow D^{0} e^{+} e^{-}, D^{0*} \rightarrow D^{0} \pi^{0} (\gamma e^{+} e^{-})$

due to a hard electron scatter in material.

method to remove: A' vertex occurring in the proper decay plane

• post-module:

 $D^{0*} \rightarrow D^{0}\gamma$, gamma covert to e⁺e⁻ by interacting with the detector material.

method to remove: vertex of e+e- will not consistent with any detector material

Comparison to Other Experiments

- HPS (Heavy Photon Search) @ Jefferson Lab HPS has a state-of-the-art tracking and vertax detector but
 - LHCb Larger Lorentz boosts (3 times)
 - fixed target: pushing A' flight direction into detection
 - LHCb access to smaller opening angles

Displaced Search Background

- pre-module : semi-leptonic heavy meson decays
 b → c μ[±] X, c → μ[±] Y
 10⁴ events per ± 2 σ inv mass bin
- post-module : τ_A ≫ τ_{D,B} mostly material interactions.
 25 events per mass bin (rescaled from Ks → μ⁺ μ⁻ search)

Displaced Search e.g. beam dump experiments

- A' decay rate $\Gamma \propto \epsilon^2 \times m_{A'}$
- Background free
- shield length: cm m

Resonant Search

- A' $\rightarrow e^+ e^-$, A' $\rightarrow \mu^+ \mu^-$
- background from off-shell photon $S/\sqrt{B} \sim \epsilon^2 \sqrt{N}$

