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Early evidence of DM in Coma cluster
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Other Astrophysical Evidences of DM

(Collision of galaxies in Bullet cluster)

Gravitational lensing observed by
Hubble in Abel 1689 cluster




Evidence of DM in Cosmological scale
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Nature of Dark Matter...

From the astrophysical evidences of dark matter we infer that...

v DM should be a massive particle and hence interact
gravitationally.
v" It is electrically neutral and colorless. Therefore it could hide

itself easily.
v" It is stable on the cosmological time scale and therefore the
large scale structure exists.

Mass of DM=
Spin of DM=?, Charge of DM=1
Interaction apart from gravity ?
Relic abundance
(symmetric/asymmetric ?)

However,
We don’t know ...

Many

unanswered
questions!
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" Is DM a WIMP (Gravity+ weak) ?

Steigman and Turner, 1984

The DM is assumed to be in
equilibrium in the early
Universe via the weak

interaction processes. As the ST G—_—_" 10,768, o N

temperature, due to < po-1f Planck 10 ey’
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Analytical estimation of The observed relic
a WIMP relic density abundance of DM by

VWMAP and PLANCK
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Which is typically a weak —
interaction cross-section.

Therefore one believes that DM could be a WIMP,




DM:The physics beyond the SM

Fermions: spin = 1/2 particles The On|)’ Pal"tides in SM WhiCh
seem to satisfy some properties
of DM are neutrinos:

mV
thz = Z ~ 0.0024
91.5eV

! iggs Boson: | | 2

' spin=0 —_ << ! ! h
fundamental DM

scalar particle

Cowsik and McClelland, PRL 1972 \

Leptons

So, we need to look for a candidate of DM in the beyond
standard model of particle physics, which is heavy (> a few
GeV).

Lee and Weinberg, PRL 1977




Some guiding principle for DM physics

Since we don’t know many things about the dark

matter, the main guiding principles would be:

v’ Look for a non-baryonic cold dark matter
in a beyond SM framework which is stable
on cosmological time scale.

v’ Motivated by theory

v May be simplicity

£new=£5M+£DM+ ‘L:DM

Apply the relevant constraints

Look for the testable prediction !



We will discuss only

about fermionic dark
matter candidates




Singlet Fermion as cold Dark Matter

(1) Relic abundance is large for

_l_
u yyd H
Lpy = yly O x+Myy+
« A
Higgs portal coupling l Where A s the scale of new

physics

i ; DM \/DM

h | A is the candidate of dark matter
| due to a residual symmetry Z,
H is the SM Higgs doublet.
QDMhZZF(Ml,A) o5 (DM =N)=f(M ,A)

apart from the Higgs funnel.

(2) We can not do any further prediction about our weak interaction
assumption of dark matter.




Can a vector-like doublet fermion be DM ?

Q — _ N °©

= Nijv* N = = (1,2,-1
qLDM Niy“D,N+MNN (Nj ( )
| N° can be made stable using a residual Z, symmetry.

However NONO _s\W*W~ is so large that relic
abundance is very small.

o(N°—n) via Z-boson is also much larger than the current
LUX limit.

alone can not be a dark matter candidate.

Note: It can be a viable asymmetric DM in presence of scalar triplet
which can induce neutrino masses through type-ll seesaw.

Ref. C.Arina and N. Sahu, 1108.3967, NPB854,2012.



Vector-like Singlet-Doublet Fermion DM

£new=LSM+ LDM
Loy =M NN+ I\/I;(?;(0 +[YNI—~I 7’ +hcl]
N - 0; 0
+Niy*D,N+ " 1y"0

N° H™ 0 _
where N = (N ): (1,2,-1),H = LH 0] =121,y =(110)

After EW phase transition the mass matrix for neutral vector-like
fermions is given by

M, mg ) N°
my M ZO

X

(N 0 ZO

Hep-th/0501082,  hep-ph/0510064,
arXiv: 0705.4493, arXiv:0706.0918, arXiv:0804.4080,
arXiv:1109.2604, arXiv:1311.5896,  arXiv:1504.07892,  arXiv:1505.03867
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1 x MN_M;( 1 Z
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M, =M, + D N, =cosAN° —sin Gy°
My, —M,

M* =M,sin“@+M,cos*’@ =M, ;N"

m
N M 4
The lightest particle N_I is the SINGLET
candidate of dark matter with

appropriate mixing angle (o



Constraints from direct search of DM
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LEP Constraints from Z-decay

0.002 —

0.0015

T T T T T T T T T T T T T T T

M, <M, /2 = 45GeV
M, = 45GeV

l—}inv
BrinV = FSM 1—«|nv
h Tly
ATLAS collaboration

1508.07869 (hep-ex)

Constraints from invisible Higgs decay
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T
Ty f
+ % -:_44#
1F++ -¢+++1+-ﬁ-
n
S E e AR

0.8

Sin26

0.4

M (GeV)



Relic density of singlet-doublet Fermion
DM
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We look for the observed relic abundance in the parameter space spanned by
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Contours of correct relic density
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Collider search of DM
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The production of N*-pair is independent
of the small mixing angle. However, its
production cross-section decreases rapidly
with its mass.
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Displaced vertex signature of N* for small mixing angle:

N* = N, +/% +v,

1000

10

r' (cm)

0.1

—_
LY R 11 B LI B B R R B R RN B R

sin@ =3x10"* *

M* =150GeV

m, =105MeV

Thus for a small mass
II\II\l 1 1 \\Illll 1 | I I (N I A |

10

4

MM, (GeV)
|

0.1
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matter.
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Di-photon excess at CERN LHC
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Dark sector assisted diphoton excess

- — 0.0 0.0

Lpy =M, wy+{Spy+t Sy +M xx
— 0, .0 —. "~ 0; 0

+[Yy H " +he]+wiy"Dy + xiy"0 ¢

W = [WO} =(1,2,-1),H = [H :} =(121), v’ =(11,0)
/4 H

After electroweak phase transition, the mass matrix for vector-like fermion is given

by
i I 19
My M ZO

Ve

Note: S does not acquire any vacuum expectation value. Ve assume that the bare
mass of S is 750 GeV. We also assume that the tree-level decay of S to y and 4°is
forbidden kinematically. This implies ¥ and 2’ masses are heavier than 385 GeV.

So S can decay at loop level to 7/7/,WW Ll Zj/




Production and decay of S

The production of S via the mixing with SM Higgs is very suppressed. However,
we need a large cross-section. Therefore, we can introduce an iso-singlet
vector-like quark so that S can copiously produced via gluon-gluon fusion
process, similar to the Higgs production in the SM.

Production and Decay of Scalar S with 6,5 — 0(¢) being DM)

[,=01(S—>99)+I'(S—>y)+I(S—>WW)
+I'(S > Z2Z)+TI'(S > Zy)+I'(S — hh)

I'(S—yy)
r

tot
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Conclusions

" (1)The observed relic abundance of DM implies that its
freeze-out cross-section (~0.Ipb) is typically a weak
interaction cross-section. So it is largely believed that the
DM is a WIMP,

(2)We studied the case of a vector-like leptonic DM which
satisfies the relic abundance in most of the parameter
space.

(3)The spin independent direct detection cross-section is
within the reach of Xenon-IT.

(4)The displaced vertex signature of the charged partner
looks interesting.






Constraint from S parameters
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