A TeV scale messenger (e.g. 750 GeV)
of Dark Matter
Andi Hektor
(NICPB, Tallinn, Estonia)
[in collaboration with L. Marzola, M. Raidal, S. Di Chiara, K. Kannike]

CERN, TeVPA

Sept 16, 2016

A TeV scale messenger (e.g. ISOGEV) of Dark Matter

Andi Hektor
(NICPB, Tallinn, Estonia)
[in collaboration with L. Marzola, M. Raidal, S. Di Chiara, K. Kannike]

CERN, TeVPA

Sept 16, 2016

- From the effective WIMP to the simplified WIMP
- Two ways to escape from Direct Detection
(i) 'Coy DM'
(ii) 'Resonance Portal'
- 'Coy DM’
- Gamma-ray line signal from Coy DM
- A pseudoscalar case of TeV-scale mediator
- 'Resonance portal'
- Life in the resonance zone is interesting - velocity dependent annihilation signal!

Based on:
| 403.340 I, I 507.05096, I 602.00004, I 603.07263
\& two appearing in some next weeks

Effective WIMP

thermal freeze-out (early Univ.) indirect detection (now)

$$
\mathscr{L}_{\mathrm{EFT}}=\frac{1}{M_{*}^{2}}(\bar{q} q)(\bar{\chi} \chi)
$$

production at colliders

From the effective to the simplified DM

thermal freeze-out (early Univ.)
indirect detection (now)

production at colliders

$$
\mathscr{L}_{\mathrm{EFT}}=\frac{1}{M_{*}^{2}}(\bar{q} q)(\bar{\chi} \chi)
$$

$$
\begin{gathered}
\mathscr{L}_{0_{S} \frac{1}{2}}=\frac{1}{2}\left(\partial_{\mu} S\right)^{2}-\frac{1}{2} m_{S}^{2} S^{2}+\bar{\chi}\left(i \not \partial-m_{\chi}\right) \chi-g_{\chi} S \bar{\chi} \chi-g_{S M} S \sum_{f} \frac{y_{f}}{\sqrt{2}} \bar{f} f \\
\mathscr{L}_{0_{A} s \frac{1}{2}}=\frac{1}{2}\left(\partial_{\mu} A\right)^{2}-\frac{1}{2} m_{A}^{2} A^{2}+\bar{\chi}\left(i \not \partial-m_{\chi}\right) \chi-i g_{\chi} A \bar{\chi} \gamma^{5} \chi-i g_{S M} A \sum_{f} \frac{y_{f}}{\sqrt{2}} \bar{f} \gamma^{5} f .
\end{gathered}
$$

The model killer, Direct Detection

Escaping from the killer Direct Detection:
A. 'Coy DM'
B. 'Resonance Portal'

Coy DM

Bohm et al, I40I.6458; Berlin et al, I404.0022; Dolan et al, I4I2.5I74

Coy DM has surprisingly many features...

- Self-interacting DM, DAMA/LIBRA etc
- Muon g-2
- γ-ray line

Coy DM \& muon g-2

'Leptophilic' Coy DM, Hektor \& Marzola, I403.340I

Coy DM \& γ-ray line

Coy DM \& γ-ray line

$m \chi<m_{t}$

$$
\mathscr{L}_{0_{A} s_{\frac{1}{2}}}=\frac{1}{2}\left(\partial_{\mu} A\right)^{2}-\frac{1}{2} m_{A}^{2} A^{2}+\bar{\chi}\left(i \not \partial-m_{\chi}\right) \chi-i g_{\chi} A \bar{\chi} \gamma^{5} \chi-i g_{S_{M} A} \sum_{f} \frac{y_{f}}{\sqrt{2}} \bar{f} \gamma^{5} f .
$$

Coy DM \& γ-ray line

- Loop suppression, $\sim 10^{-2} \ldots 10^{-3}$
- Sensitivity of line/broader distribution search, $\sim 10^{2}$

γ-ray line signal alone

$$
\sigma_{\chi \chi \rightarrow \gamma \gamma}=\frac{1}{512 \pi^{3}} \frac{\left(g_{\chi} g_{f} \alpha Q_{f} N_{c}^{f}\right)^{2}\left(2 m_{\chi}\right)^{4}}{\left(m_{a}^{2}-4 m_{\chi}^{2}\right)^{2}+m_{a}^{2} \Gamma_{a}^{2}}\left|\frac{A_{1}\left(\tau_{f}\right)}{m_{f}}\right|^{2}
$$

γ-ray line signal alone

 1506.00013

(4) Ratio of the γ-ray line and $b b$ signal

$$
R=\frac{\left(N_{c}^{t} \alpha Q_{t} y_{t}\right)^{2}}{2 \pi^{2} N_{c}^{b} y_{b}^{2}} \frac{m_{t}^{2}}{m_{\chi}^{2} \sqrt{1-\frac{m_{t}^{2}}{m_{\chi}^{2}}}}\left|\arcsin ^{2}\left(\frac{m_{\chi}}{m_{t}}\right)\right|^{2}
$$

Fermi-LAT
1506.00013,

I503.0264|

The γ-ray line and the Galactic Centre Excess

The γ-ray line and the Galactic Centre Excess

The γ-ray line and the Galactic Centre Excess

$$
R=\frac{\left(N_{c}^{t} \alpha Q_{t} y_{t}\right)^{2}}{2 \pi^{2} N_{c}^{b} y_{b}^{2}} \frac{m_{t}^{2}}{m_{\chi}^{2} \sqrt{1-\frac{m_{t}^{2}}{m_{\chi}^{2}}}}\left|\arcsin ^{2}\left(\frac{m_{\chi}}{m_{t}}\right)\right|^{2}
$$

Galactic Centre Excess \& TeV-scale pseudoscalar mediator

or

What did we learn from the 750 GeV pseudo-particle?

Coy DM \& Galactic Centre Excess \& TeV-scale mediator

- Pseudoscalar mediator, $\mathrm{m}_{\mathrm{A}}=750 \mathrm{GeV}$
- Scalar DM particle

Life in 'Resonance portal'

Escaping from the killer Direct Detection:
A. 'Coy DM'
B. 'Resonance Portal'

Is the Resonance Portal fine tuning?
I. Yes
2. No. There can be theoretical motivation, e.g. hep-ph/9207234, hep-ph/9704403, hep-ph/ 980423 I

RP offers interesting phenomenology for indirect section

$$
\begin{aligned}
& \sigma_{\chi X \rightarrow \mathrm{~S} \rightarrow \mathrm{ff}}=\frac{\mathrm{N}_{\mathrm{c}}\left(\mathrm{~g}_{X} A y_{f}\right)^{2}}{16 \pi} \frac{\mathrm{~m}^{2}\left(1-\frac{m_{f}^{2}}{\mathrm{~m}^{2}}\right)^{3 / 2}}{\left(\mathrm{M}^{2}-\mathrm{s}\left[\mathrm{~m}^{2}, \mathrm{v}_{\text {rel }}\right]\right)^{2}+\mathrm{M}^{2} \Gamma^{2}} \mathrm{v}_{\text {rel }} \\
& \sigma_{\chi X \rightarrow A \rightarrow f f}=\frac{N_{c}\left(g_{X} A y_{f}\right)^{2}}{16 \pi} \frac{m^{2}\left(1-\frac{m_{f}^{2}}{m^{2}}\right)^{1 / 2}}{\left(M^{2}-s\left[m^{2}, v_{r e l}\right]\right)^{2}+M^{2} \Gamma^{2}} v_{r e l}{ }^{-1} \\
& m^{2}=\frac{M^{2}}{4(1+\delta)}, \quad s\left[m^{2}, v_{r e l}\right]=\frac{4 m^{2}}{1-v_{r e l}{ }^{2}} \\
& M=m_{\text {higgs }}, g \chi=I \\
& A=l, y_{f}=l \\
& \Gamma=\Gamma_{\text {higgs }}
\end{aligned}
$$

RP offers interesting phenomenology for indirect section

RP offers interesting phenomenology for indirect section

Takeaway messages from my talk

- Coy DM offers rich phenomenology - be careful with the γ-ray line!
- 'Resonance Portal' - the annihilation crosssection constraints from galaxy clusters, galaxies, dwarfs etc are different!

Thank you!

