

Latest results and current status of KamLAND-Zen

Kavli Institute for the Physics and Mathematics of the Universe Alexandre KOZLOV

TeV Particle Astrophysics 2016, CERN (September 13, 2016)

The KamLAND-Zen history in brief

The 0vββ test of seesaw mechanism by Yanagida

Test of the **Leptogenesis** (Fukugita & Yanagida) as explanation for **baryon asymmetry of the Universe**

In calorimeters, as KamLAND, sum of kinetic energies of two electrons is measured

$$(T^{0\nu}_{1/2})^{-1} = G^{0\nu} (Q_{\beta\beta}, Z) \cdot |M^{0\nu}|^2 (m_{\beta\beta}^2)$$

- $G^{0v}(Q_{\beta\beta},Z)$ phase space factor
- |M⁰v| nuclear matrix elements
- m_{ββ} effective mass of neutrino

Structure of the KamLAND-Zen 400

- Liquid scintillator loaded with xenon (2.5-3wt%) enriched to 90.8% ¹³⁶Xe in a Ø3.08m mini-balloon made of a 25μm-thick Nylon film.
- Exploits the KamLAND detector radio-purity, 1879 PMTs 17&20-inch, and data acquisition system (currently 2 parallel running systems).

Phase I result affected by Fukushima fallout

Intermediate result at the beginning of Phase II

During **Phase II** the same mini-balloon was used but amount of enriched xenon was increased from **320kg** to **383kg**.

Intermediate result at the beginning of Phase II

 $T^{0v}_{1/2}$ >2.6×10²⁵ yr at 90% C.L. $\rightarrow m_{\beta\beta}$ <(140-280) meV

The **KamLAND-Zen result alone** excluded neutrinoless double beta decay observation ("KK") claim: Mod. Phys. Lett. A **21**, 1547 (2006).

At the end of Phase II calibration sources were deployed directly to the **Xenon loaded liquid scintillator**. Position dependence of events reconstructed **Energy** and **Vertex** information was measured.

Final result from KamLAND-ZEN 400

 $T^{0v}_{1/2} > 1.07 \times 10^{26} \text{ yr at } 90\% \text{ C.L.}$

PRL 117, 082503 (2016)

Phase I (89.5kg yr): October 12, 2011 – June 14, 2012

Phase II (504kg yr): December 11, 2013 – October 27, 2015

First test of the IH mass region with KL-ZEN 800

CP violation in the neutrino sector

baryon asymmetry of the Universe

KL-ZEN 400

(better than expected)

KL-ZEN 800 (expected) 40meV

 $m_{BB} = 47 \pm 1 \text{ meV}$

K. Harigaya, M. Ibe, and T. Yanagida

"Seesaw mechanism with

Occam's razor"

PRD 86, 013002 (2012)

²¹⁴Bi events on the first mini-balloon surface

The ²¹⁴Bi activity on the mini-balloon's surface corresponds to **0.16ppb** of ²³⁸U assuming equilibrium while film itself has a **2ppt** of ²³⁸U (measured by ICP-MS).

Dust particles that contain ²³⁸**U** originate from the mini-balloon construction and failure of diaphragm pump which was a part of the purification system.

New mini-balloon

Work was done during high humidity season.

Volume: **31.4m**³

Diameter: 3.84m

Material: Nylon

Thickness: 25µm

Tohoku U. class 1 clean room was used for construction. The clean room and all instruments were carefully cleaned. Dust samples were scanned for ¹³⁷Cs at the underground **HPGe** detector at Kamioka.

Laser visualization system for control of airborne particles

Helps to select

- clean-room consumables: gloves, clean suits, wiping materials.
- working procedures such as human's motions that minimize number of dust particles in the air.

New mini-balloon production (summer-autumn 2015)

The new mini-balloon (MB) at KamLAND (Aug 2016)

MB partially filled with a "dummy" liquid scintillator

The new MB at KamLAND (August 2016)

The mini-balloon was inflated using 30m³ of liquid scintillator. It will be replaced by the Xenon loaded liquid scintillator in October-November.

KamLAND2-Zen to cover the IH mass region

We need to detect **more light** to improve energy resolution \rightarrow reduce the $2v\beta\beta$ tail background.

Sensitivity target: $m_{\beta\beta} \sim 20 \text{meV}$

Gain in number of detected photons

(after upgrade to KamLAND2)

Lab scintillator: 1.4 times

High QE PMTs: 1.9 times

Light collecting cones: **1.8** times

Enriched xenon mass > 1000kg

Summary

mass region.