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Horndeski scalar-tensor action

Horndeski action:

Dark Energy

S =
1

2κ2

∫
d4x
√
−g
{
G2(ϕ,X )− G3(ϕ,X )�ϕ

+ G4(ϕ,X )R +
∂G4

∂X

[
(�ϕ)2 − (∇µ∇νϕ)2

]
+ G5(ϕ,X )Gµν∇µ∇νϕ

− 1

6

∂G5

∂X

[
(�ϕ)3 − 3�ϕ(∇µ∇νϕ)2 + 2(∇µ∇νϕ)3

]
+Lm(gµν , ψi )

}
,

where X ≡ − 1
2 (∂µϕ)2
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Self-acceleration

Conformal transformation (g̃µν = Ω gµν) from Jordan to
Einstein-Friedmann frame

Self-acceleration (a & 0.6) (d2a/dt2 > 0, d2ã/dt̃2 ≤ 0):

d2ã

d t̃2
=

1√
Ω

[(
1 +

1

2

Ω′

Ω

)
d2a

dt2
+

aH2

2

(
Ω′

Ω

)′]
≤ 0

⇒
∣∣∣∣Ω′Ω

∣∣∣∣ & O(1)

Self-acceleration

The breaking of the strong (or weak) equivalence principle in the
cosmological background is responsible for cosmic acceleration.
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EFT of DE & MG

Cosmological background and linear perturbations

H(t): Hubble parameter

αK(t): Kineticity

αM(t): Planck mass evolution rate

αB(t): Braiding

αT(t): Tensor speed alteration (c2
T = 1 + αT)

Creminelli et al. (2008); Park et al. (2010); Gubitosi et al. (2012);

Bloomfield et al. (2012); Bellini & Sawicki (2014); Gleyzes et al. (2014) . . .
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Self-acceleration

Self-acceleration (a & 0.6) (d2a/dt2 > 0, d2ã/dt̃2 ≤ 0):

d2ã

d t̃2
=

1√
Ω

[(
1 +

1

2

Ω′

Ω

)
d2a

dt2
+

aH2

2

(
Ω′

Ω

)′]
≤ 0

∣∣∣∣Ω′Ω

∣∣∣∣

=

∣∣∣∣αM +
α′T

1 + αT

∣∣∣∣

& O(1)

Consistency relation: Ω = M2 c2
T, where αM = (M2)′/M2

[L & Taylor (2015)]
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A Dark Degeneracy in LSS
Breaking the Dark Degeneracy with GW

Linear LSS

ds2 = −(1 + Ψ)dt2 + a(t)2(1 + 2Φ)dx2

Conservation equations unchanged; modified Einstein equations:

k2Ψ = −κ
2

2
µ(a, k)ρ̄ma

2∆m

Φ = −γ(a, k)Ψ

Closure relations:

ΛCDM: µ = 1; γ = 1

Horndeski (quasistatic): µ = h1

(
1+h4k2

1+h5k2

)
; γ = h2

(
1+h3k2

1+h4k2

)
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Linear Shielding

Linearly shielded Horndeski scalar-tensor theory

limk→∞ µ(a, k) = γ(a, k) = 1
with 3 free functions of time (1 acting only beyond QS limit)

µ(a, k) = γ(a, k) = 1
with 2 free functions of time

Can set H = HΛCDM on top of that

[L & Taylor (2014)]

Lucas Lombriser No-Go for Cosmic Self-Acceleration from GW & LSS



EFT for scalar-tensor cosmology
Large-Scale Structure & Gravitational Waves

Challenges to Cosmic Self-Acceleration

Testing gravity with LSS
A Dark Degeneracy in LSS
Breaking the Dark Degeneracy with GW

Linear Shielding

Linearly shielded Horndeski scalar-tensor theory

limk→∞ µ(a, k) = γ(a, k) = 1
with 3 free functions of time (1 acting only beyond QS limit)

µ(a, k) = γ(a, k) = 1
with 2 free functions of time

Can set H = HΛCDM on top of that

[L & Taylor (2014)]

Lucas Lombriser No-Go for Cosmic Self-Acceleration from GW & LSS



EFT for scalar-tensor cosmology
Large-Scale Structure & Gravitational Waves

Challenges to Cosmic Self-Acceleration

Testing gravity with LSS
A Dark Degeneracy in LSS
Breaking the Dark Degeneracy with GW

Linear Shielding

Linearly shielded Horndeski scalar-tensor theory

limk→∞ µ(a, k) = γ(a, k) = 1
with 3 free functions of time (1 acting only beyond QS limit)

µ(a, k) = γ(a, k) = 1
with 2 free functions of time

Can set H = HΛCDM on top of that

[L & Taylor (2014)]

Lucas Lombriser No-Go for Cosmic Self-Acceleration from GW & LSS



EFT for scalar-tensor cosmology
Large-Scale Structure & Gravitational Waves

Challenges to Cosmic Self-Acceleration

Testing gravity with LSS
A Dark Degeneracy in LSS
Breaking the Dark Degeneracy with GW

A Dark Degeneracy
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Breaking the Dark Degeneracy with GW

Propagation of gravitational waves:

h′′ij +

(
αM + 3 +

H ′

H

)
h′ij + (1 + αT)k2

Hhij = 0

Different propagation speed: can be tested by comparing
arrival time of signals

Different damping of GW amplitude: can be tested with
standard sirens

Lucas Lombriser No-Go for Cosmic Self-Acceleration from GW & LSS



EFT for scalar-tensor cosmology
Large-Scale Structure & Gravitational Waves

Challenges to Cosmic Self-Acceleration

Testing gravity with LSS
A Dark Degeneracy in LSS
Breaking the Dark Degeneracy with GW

Breaking the Dark Degeneracy with GW

Propagation of gravitational waves:

h′′ij +

(
αM + 3 +

H ′

H

)
h′ij + (1 + αT)k2

Hhij = 0

Different propagation speed: can be tested by comparing
arrival time of signals

Different damping of GW amplitude: can be tested with
standard sirens

Lucas Lombriser No-Go for Cosmic Self-Acceleration from GW & LSS



EFT for scalar-tensor cosmology
Large-Scale Structure & Gravitational Waves

Challenges to Cosmic Self-Acceleration

Testing gravity with LSS
A Dark Degeneracy in LSS
Breaking the Dark Degeneracy with GW

Breaking the Dark Degeneracy with GW

Propagation of gravitational waves:

h′′ij +

(
αM + 3 +

H ′

H

)
h′ij + (1 + αT)k2

Hhij = 0

Different propagation speed: can be tested by comparing
arrival time of signals

Different damping of GW amplitude: can be tested with
standard sirens

Lucas Lombriser No-Go for Cosmic Self-Acceleration from GW & LSS



EFT for scalar-tensor cosmology
Large-Scale Structure & Gravitational Waves

Challenges to Cosmic Self-Acceleration

Testing gravity with LSS
A Dark Degeneracy in LSS
Breaking the Dark Degeneracy with GW

Breaking the Dark Degeneracy with GW
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Minimal self-acceleration

Assume αT ' 0 (cT = 1) and H = HΛCDM

cosmic rays, binary pulsars, aLIGO GW + GRB (2017?)

Cosmic self-acceleration must be due to αM:∣∣∣∣Ω′Ω

∣∣∣∣ =

∣∣∣∣αM +
α′T

1 + αT

∣∣∣∣ & O(1)

Minimal acceleration:

d2ã

d t̃2
=

1√
Ω

[(
1 +

1

2

Ω′

Ω

)
d2a

dt2
+

aH2

2

(
Ω′

Ω

)′]
≤ 0

⇒
(

1 +
H ′

H

)(
1 +

1

2
αM

)
+

1

2
αM
′ ≤ 0

⇒ κ2M2 ≤
(aacc

a

)2

eC(χacc−χ) , C = 2H0aacc
√

3(1− Ωm)
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Minimal self-acceleration

Minimise modification in growth of structure: αB = αM

follows from

µ∞ =
2(αB − αM)2 + α c2

s

α c2
s κ

2M2

and M2, α, c2
s > 0 for stability

Minimal self-acceleration: µ = (κ2M2)−1 ≥ 1 and γ = 1
with µ(a ≤ aacc ' 0.6) = 1 increasing to µ(a = 1) ' 1.04
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Incompatibility with observations

Background:
SN Ia, BAO, H0, CMB

Perturbations:
CMB (Planck 2015), EG ,

galaxy-ISW

ISW sensitive to Σ′ = −αMΣ

where Σ = (1 + γ)µ/2

Overall:
3σ worse fit than ΛCDM

strong evidence for Λ (B ' 39)

[L & Lima (2016)]
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Conclusions & Outlook

Horndeski (self-accelerated) MG can be degenerate in
background and (linear) LSS (parametrised tests?)

GW cosmology will break this degeneracy and discriminate
between a cosmological constant (or dark energy) and a
scalar-tensor modification of gravity

Minimal self-acceleration with standard GW speed performs
3σ worse than ΛCDM

Weak lensing or galaxy CMB lensing cross correlations may
increase significance

More complicated theories introduce more freedom (are there
sufficient observations to break degeneracies?)
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Thank you!
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