

The detection of binary black holes in Advanced LIGO's first scientific run arXiv:1606.04856

Ed Porter CNRS/APC

TeVPA 2016, CERN, 12-16/09/16

INTRODUCTION

- Overview of O1
- Primer GW detection
- BBH detections
- Astrophysical implications
- Topics I won't touch on
 - Parameter estimation (see Vivien Raymond's talk)
 - EM follow up searchers (see Leo Singer's talk)
 - Testing GR (see Chris Van Den Broeck's talk)
 - Stochastic background (see Giancarlo Cella's talk)

OVERVIEW OF 01

Duration: Sept 12, 2015 - Jan 19, 2016

51.5 days of coincident analysis time

Detector sensitivity: 30Hz - several kHz

Search range : 2 ≤ M/M_☉ ≤ 100

 $0 \le \chi_i \le 0.99$

Minimum BH mass : 2 M_☉

PRIMER ON GW DETECTION

Two methods of detection:

- 1) Unmodelled
 - short duration FFTs
 - Time-frequency plane
 - Search for excess power in pixels
- 2) Modelled
 - Construct theoretical models of the inspiral merger and ringdown (PN, EOB, NR)
 - Cross correlate each template with the data
 - Very sensitive to phase evolution

We now have parameters for 9 BHs

Event	GW150914	GW151226	LVT151012
Signal-to-noise ratio ρ	23.7	13.0	9.7
False alarm rate FAR/yr ⁻¹	$< 6.0 \times 10^{-7}$	$< 6.0 \times 10^{-7}$	0.37
p-value	7.5×10^{-8}	7.5×10^{-8}	0.045
Significance	$> 5.3\sigma$	$> 5.3 \sigma$	1.7σ
Primary mass $m_1^{ m source}/{ m M}_{\odot}$	$36.2^{+5.2}_{-3.8}$	$14.2^{+8.3}_{-3.7}$	23^{+18}_{-6}
Secondary mass $m_2^{\text{source}}/\text{M}_{\odot}$	$29.1_{-4.4}^{+3.7}$	$7.5_{-2.3}^{+2.3}$	13^{+4}_{-5}
Chirp mass $\mathscr{M}^{\mathrm{source}}/\mathrm{M}_{\odot}$	$28.1_{-1.5}^{+1.8}$	$8.9_{-0.3}^{+0.3}$	$15.1^{+1.4}_{-1.1}$
Total mass $M^{\rm source}/{ m M}_{\odot}$	$65.3_{-3.4}^{+4.1}$	$21.8_{-1.7}^{+5.9}$	37^{+13}_{-4}
Effective inspiral spin Xeff	$-0.06^{+0.14}_{-0.14}$	$0.21^{+0.20}_{-0.10}$	$0.0_{-0.2}^{+0.3}$
Final mass $M_{\rm f}^{ m source}/{ m M}_{\odot}$	$62.3_{-3.1}^{+3.7}$	$20.8_{-1.7}^{+6.1}$	35^{+14}_{-4}
Final spin a_f	$0.68^{+0.05}_{-0.06}$	$0.74^{+0.06}_{-0.06}$	$0.66^{+0.09}_{-0.10}$
Radiated energy $E_{\text{rad}}/(\text{M}_{\odot}c^2)$	$3.0^{+0.5}_{-0.4}$	$1.0_{-0.2}^{+0.1}$	$1.5^{+0.3}_{-0.4}$
Peak luminosity $\ell_{\text{peak}}/(\text{erg s}^{-1})$	$3.6^{+0.5}_{-0.4} \times 10^{56}$	$3.3^{+0.8}_{-1.6} \times 10^{56}$	$3.1^{+0.8}_{-1.8} \times 10^{56}$
Luminosity distance $D_{\rm L}/{ m Mpc}$	420^{+150}_{-180}	440^{+180}_{-190}	1000^{+500}_{-500}
Source redshift z	$0.09^{+0.03}_{-0.04}$	$0.09^{+0.03}_{-0.04}$	$0.20^{+0.09}_{-0.09}$
Sky localization $\Delta\Omega/\text{deg}^2$	230	850	1600

Event	GW150914	GW151226	LVT151012
Signal-to-noise ratio ρ	23.7	13.0	9.7
FAR/yr ⁻¹	$< 6.0 \times 10^{-7}$	$< 6.0 \times 10^{-7}$	0.37
p-value	7.5×10^{-8}	7.5×10^{-8}	0.045
Significance	$> 5.3\sigma$	$> 5.3 \sigma$	1.7σ
Primary mass $m_1^{\rm source}/{ m M}_{\odot}$	$36.2^{+5.2}_{-3.8}$	$14.2^{+8.3}_{-3.7}$	23^{+18}_{-6}
Secondary mass $m_2^{\text{source}}/\text{M}_{\odot}$	$29.1_{-4.4}^{+3.7}$	$7.5_{-2.3}^{+2.3}$	13^{+4}_{-5}
Chirp mass ${\mathscr M}^{ m source}/{ m M}_{\odot}$	$28.1^{+1.8}_{-1.5}$	$8.9^{+0.3}_{-0.3}$	$15.1^{+1.4}_{-1.1}$
Total mass $M^{\rm source}/{ m M}_{\odot}$	$65.3_{-3.4}^{+4.1}$	$21.8_{-1.7}^{+5.9}$	37^{+13}_{-4}
Effective inspiral spin χ_{eff}	$-0.06^{+0.14}_{-0.14}$	$0.21^{+0.20}_{-0.10}$	$0.0_{-0.2}^{+0.3}$
Final mass $M_{ m f}^{ m source}/{ m M}_{\odot}$	$62.3_{-3.1}^{+3.7}$	$20.8^{+6.1}_{-1.7}$	35^{+14}_{-4}
Final spin a_f	$0.68^{+0.05}_{-0.06}$	$0.74^{+0.06}_{-0.06}$	$0.66^{+0.09}_{-0.10}$
Radiated energy $E_{\rm rad}/({\rm M}_{\odot}c^2)$	$3.0^{+0.5}_{-0.4}$	$1.0_{-0.2}^{+0.1}$	$1.5^{+0.3}_{-0.4}$
Peak luminosity $\ell_{\text{peak}}/(\text{erg s}^{-1})$	$3.6^{+0.5}_{-0.4} \times 10^{56}$	$3.3^{+0.8}_{-1.6} \times 10^{56}$	$3.1^{+0.8}_{-1.8} \times 10^{56}$
Luminosity distance $D_{\rm L}/{ m Mpc}$	420^{+150}_{-180}	440^{+180}_{-190}	1000^{+500}_{-500}
Source redshift z	$0.09^{+0.03}_{-0.04}$	$0.09^{+0.03}_{-0.04}$	$0.20^{+0.09}_{-0.09}$
Sky localization $\Delta\Omega/\text{deg}^2$	230	850	1600

	CW150014	CW151006	11/2/1010
Event	GW150914	GW151226	LVT151012
Signal-to-noise ratio ρ	23.7	13.0	9.7
False alarm rate FAR/yr ⁻¹	$< 6.0 \times 10^{-7}$	$< 6.0 \times 10^{-7}$	0.37
p-value	7.5×10^{-8}	7.5×10^{-8}	0.045
Significance	$> 5.3\sigma$	$> 5.3 \sigma$	1.7σ
Primary mass $m_1^{\rm source}/{ m M}_{\odot}$	$36.2^{+5.2}_{-3.8}$	$14.2^{+8.3}_{-3.7}$	23^{+18}_{-6}
Secondary mass $m_2^{\text{source}}/\text{M}_{\odot}$	$29.1_{-4.4}^{+3.7}$	$7.5_{-2.3}^{+2.3}$	13^{+4}_{-5}
Chirp mass $\mathscr{M}^{\mathrm{source}}/\mathrm{M}_{\odot}$	$28.1_{-1.5}^{+1.8}$	$8.9_{-0.3}^{+0.3}$	$15.1^{+1.4}_{-1.1}$
Total mass $M^{\rm source}/{ m M}_{\odot}$	$65.3_{-3.4}^{+4.1}$	$21.8_{-1.7}^{+5.9}$	37^{+13}_{-4}
Effective inspiral spin χ_{eff}	$-0.06^{+0.14}_{-0.14}$	$0.21^{+0.20}_{-0.10}$	$0.0_{-0.2}^{+0.3}$
Final mass $M_{ m f}^{ m source}/{ m M}_{\odot}$	$62.3_{-3.1}^{+3.7}$	$20.8^{+6.1}_{-1.7}$	35^{+14}_{-4}
Final spin a_f	$0.68^{+0.05}_{-0.06}$	$0.74^{+0.06}_{-0.06}$	$0.66^{+0.09}_{-0.10}$
Radiated energy $E_{\text{rad}}/(\text{M}_{\odot}c^2)$	$3.0^{+0.5}_{-0.4}$	$1.0_{-0.2}^{+0.1}$	$1.5_{-0.4}^{+0.3}$
Peak luminosity $\ell_{\text{peak}}/(\text{erg s}^{-1})$	$3.6^{+0.5}_{-0.4} \times 10^{56}$	$3.3^{+0.8}_{-1.6} \times 10^{56}$	$3.1^{+0.8}_{-1.8} \times 10^{56}$
Luminosity distance $D_{\rm L}/{ m Mpc}$	420^{+150}_{-180}	440^{+180}_{-190}	1000^{+500}_{-500}
Source redshift z	$0.09^{+0.03}_{-0.04}$	$0.09^{+0.03}_{-0.04}$	$0.20^{+0.09}_{-0.09}$
Sky localization $\Delta\Omega/{\rm deg}^2$	230	850	1600

Event	GW150914	GW151226	LVT151012
Signal-to-noise ratio ρ	23.7	13.0	9.7
False alarm rate FAR/yr ⁻¹	$< 6.0 \times 10^{-7}$	$< 6.0 \times 10^{-7}$	0.37
p-value	7.5×10^{-8}	7.5×10^{-8}	0.045
Significance	$> 5.3\sigma$	$> 5.3 \sigma$	1.7σ
Primary mass $m_1^{\rm source}/{ m M}_{\odot}$	$36.2^{+5.2}_{-3.8}$	$14.2^{+8.3}_{-3.7}$	23^{+18}_{-6}
Secondary mass $m_2^{\text{source}}/\mathrm{M}_{\odot}$	$29.1_{-4.4}^{+3.7}$	$7.5_{-2.3}^{+2.3}$	13^{+4}_{-5}
Chirp mass $\mathscr{M}^{\mathrm{source}}/\mathrm{M}_{\odot}$	$28.1^{+1.8}_{-1.5}$	$8.9_{-0.3}^{+0.3}$	$15.1^{+1.4}_{-1.1}$
Total mass $M^{ m source}/{ m M}_{\odot}$	$65.3_{-3.4}^{+4.1}$	$21.8_{-1.7}^{+5.9}$	37^{+13}_{-4}
Effective inspiral spin $\chi_{\rm eff}$	$-0.06^{+0.14}_{-0.14} \\$	$0.21^{+0.20}_{-0.10}$	$0.0^{+0.3}_{-0.2}$
Final mass $M_{ m f}^{ m source}/{ m M}_{\odot}$	$62.3_{-3.1}^{+3.7}$	$20.8^{+6.1}_{-1.7}$	35^{+14}_{-4}
Final spin a _f	$0.68^{+0.05}_{-0.06}$	$0.74^{+0.06}_{-0.06}$	$0.66^{+0.09}_{-0.10}$
Radiated energy $E_{\rm rad}/({\rm M}_{\odot}c^2)$	$3.0^{+0.5}_{-0.4}$	$1.0^{+0.1}_{-0.2}$	$1.5^{+0.3}_{-0.4}$
Peak luminosity $\ell_{\text{peak}}/(\text{erg s}^{-1})$	$3.6^{+0.5}_{-0.4} \times 10^{56}$	$3.3^{+0.8}_{-1.6} \times 10^{56}$	$3.1^{+0.8}_{-1.8} \times 10^{56}$
Luminosity distance $D_{\rm L}/{ m Mpc}$	420^{+150}_{-180}	440^{+180}_{-190}	1000^{+500}_{-500}
Source redshift z	$0.09^{+0.03}_{-0.04}$	$0.09^{+0.03}_{-0.04}$	$0.20^{+0.09}_{-0.09}$
Sky localization $\Delta\Omega/\text{deg}^2$	230	850	1600

≈10²³ L_⊙

SOURCE MASSES

- GW151226 produced the lowest mass final BH
- Which is the still with the still wi

SOURCE SPINS

As the effective spin is < 0.35 -> large parallel spins either aligned or anti-aligned with the orbital angular momentum are disfavoured

SOURCE SPINS

- Can measure final spin much better
- No extremal BHs all quite low spin

SOURCE LOCATION

ASTROPHYSICAL IMPLICATIONS

DISTANCE AND INCLINATION

- Large error in distance estimate due to detector alignment and high correlation with inclination
- Greatest posterior support for either face-on or face-off systems
- No EM counterpart, so no independent redshift measurement

ASTROPHYSICAL RATES

MASS & SPINS

- Large error in spin measurements
- Hard to distinguish possible formation channels

BH FORMATION

e.g. GW150914

 $Z_{\circ} = 0.02$

BBH MERGERS IN THE LOCAL UNIVERSE

Not possible to measure the BH mass function with 3 detection

02 - OCT 2016

CONCLUSION

Very successful 01

- **3** direct measurements of BBH mergers
- BBHs come in a range of flavours
- Total mass still heavier than anything seen in x-ray binaries
- Solution Evidence that at least one of the BHs had a spin of > 0.2, no evidence for precession, final spins quite low ~ 0.7 , no extremal BHs
- BBH astrophysical event rate is 9-240 Gpc⁻³ yr⁻¹
- Still cannot determine formation channel or IMF
- Expect more detections in 02