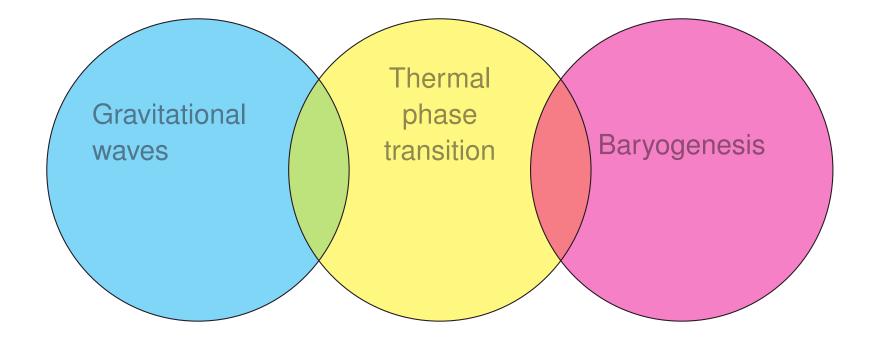


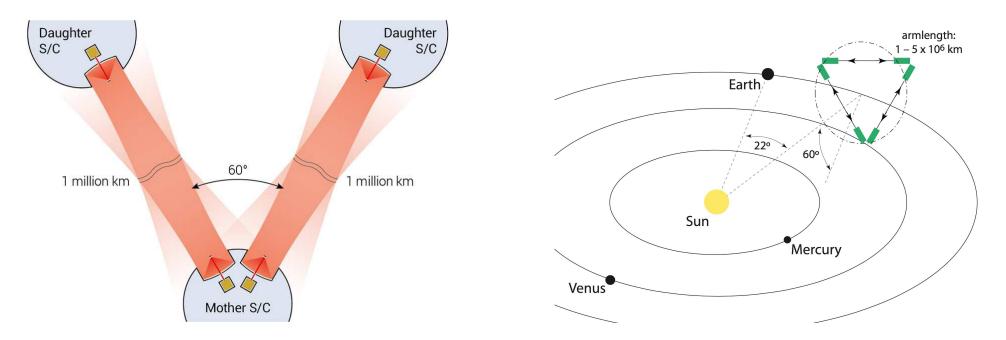
Baryogenesis, gravitational waves and thermal phase transitions


PRL 112, 041301 (2014) [arXiv:1304.2433], PRD 92, 123009 (2015) [arXiv:1504.03291], JCAP 1604 (2016) 001 [arXiv:1512.06239], and PRD 93, 124037 (2016) [arXiv:1604.08429].

David J. Weir

with Mark Hindmarsh, Stephan J. Huber and Kari Rummukainen

and the eLISA Cosmology Working Group

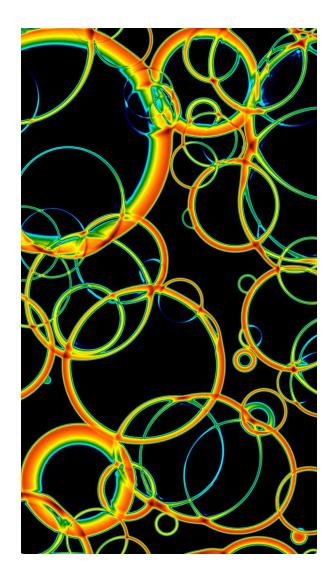

TeVPA 2016, 13 September 2016

- First order EWPT can produce observable gravitational wave signatures
- Future projects including LISA can probe a range of extended EW models
- It's *possible* to believe that a phase transition that produces observable GWs also could explain baryogenesis Megevand; Joyce, Prokopec, Turok; Fromme, Huber, Seniuch; Caprini and No; ...

What's "next": [e]LISA Talks by Scott Hughes and others

Peak sensitivity in mHz: well-placed to see background from EWPT

- eLISA would have two arms (four laser links), 1M km separation
- Launch as ESA's third large-scale mission (L3) in c.2034
- Cheaper version of LISA (2 arms, smaller, noisier, shorter duration)
- In light of events:
 - Restore missing arm?
 - Increase separation?
 - Extend mission duration?


Extended Standard Model with first-order PT. Around temperature T_* ,

- Scalar field bubbles nucleate with rate β
- Bubbles expand, liberate latent heat characterised by α_{T_*}
- Bubbles interact with plasma – deposit kinetic energy with efficiency $\kappa_{\rm f}$
- Friction from plasma acts on bubble walls
 walls move with velocity v_{wall}
- Bubbles collide
 - producing gravitational waves

eta, $lpha_{T_*}$, v_{wall} (and T_*):

3 (+1) parameters are all you need

Espinosa, Konstandin, No, Servant; Kamionkowski, Kosowsky, Turner (Can get $\kappa_{\rm f}$ from α_{T_*} and $v_{\rm wall}$)

Standard lore:

- Bubbles of the broken phase nucleate and expand

 within the broken phase, the baryon number is frozen out
- 2. Particles in the plasma scatter off the bubble wall generating C and CP asymmetries in front of the wall
- Particles diffuse back into the symmetric phase
 sphaleron transitions convert this into a baryon asymmetry
- Baryon asymmetry remains when bubble wall 'catches up' and in the broken phase a baryon asymmetry is produced

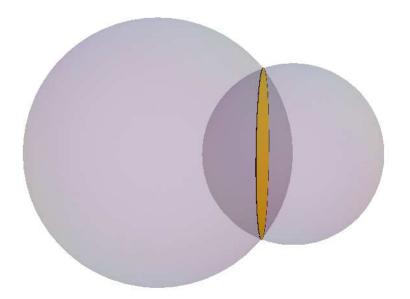
Need:

- A strongly first-order phase transition (to avoid washout within the bubble walls) – Good for GWs!
- Slow bubble wall velocity (must normally be subsonic, and slower the better for diffusion processes to work) – Bad for GWs!

Key question: how does the GW power spectrum depend on the wall velocity?

What the metric sees at a thermal phase transition

- Bubbles nucleate, most energy goes into plasma, then:
 - 1. $h^2\Omega_{\phi}$: Bubble walls and shocks collide 'envelope phase'
 - 2. $h^2\Omega_{sw}$: Sound waves set up after bubbles have collided, before expansion dilutes KE 'acoustic phase'
 - 3. $h^2\Omega_{turb}$: MHD turbulence 'turbulent phase'
- These sources then add together to give the observed GW power:

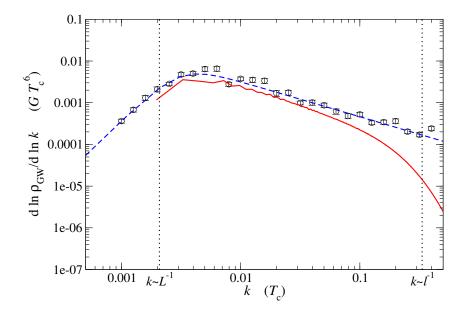

 $h^2 \Omega_{\rm GW} pprox h^2 \Omega_{\phi} + h^2 \Omega_{\rm sw} + h^2 \Omega_{\rm turb}$

- Each phase's contribution depends on the nature of the phase transition.
- Now: explore steps 1-2 through two types of simulations:
 - 1. The 'envelope approximation' $\rightarrow h^2 \Omega_{\phi}$
 - 2. Field ϕ ('Higgs') coupled by friction to fluid U^{μ} ('plasma') $\rightarrow h^2 \Omega_{sw}$

1: Envelope approximation

Kosowsky, Turner and Watkins; Kamionkowski, Kamionkowsky and Turner

- Thin-walled bubbles, no fluid
- Bubbles expand with velocity $v_{\rm w}$
- Stress-energy tensor $\propto R^3$ on wall
- Overlapping bubbles \rightarrow GWs
- Keep track of solid angle
- Collided portions of bubbles source gravitational waves
- Resulting power spectrum is simple
 - One scale
 (avg. bubble radius R_{*})
 - Two power laws (ω^3 , $\sim \omega^{-1}$)
 - Amplitude
 - \Rightarrow 4 numbers define spectral form

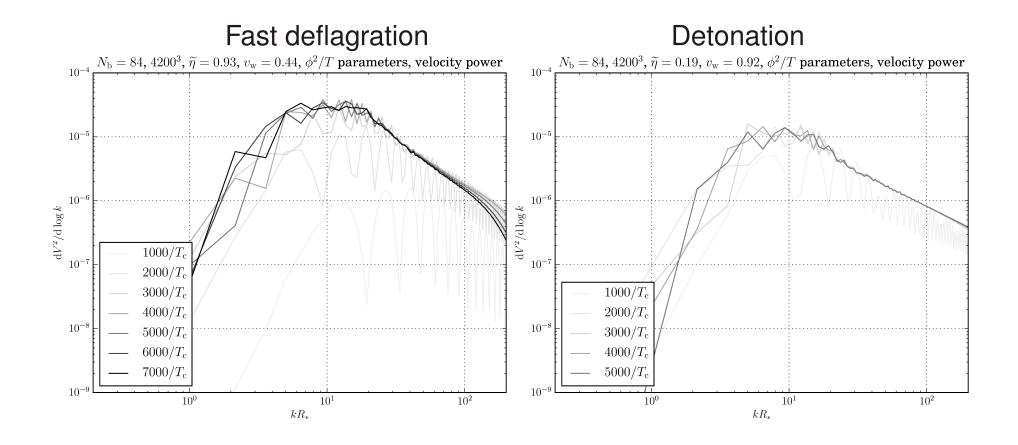


1: Making predictions with the envelope approximation

Espinosa, Konstandin, No and Servant; Huber and Konstandin

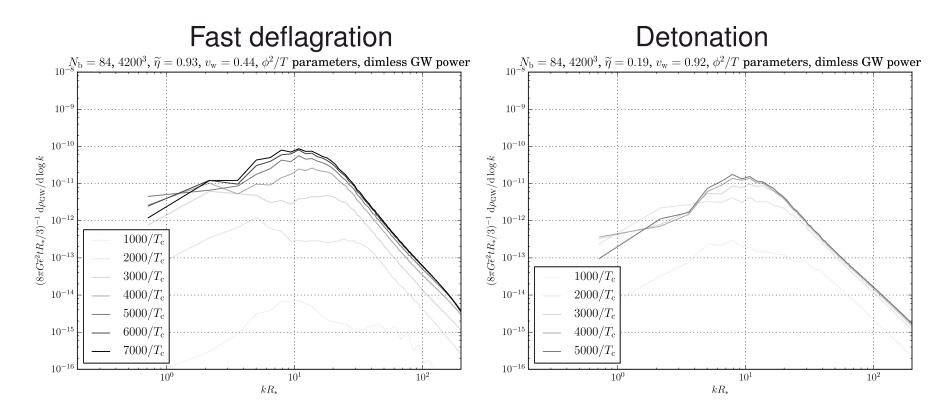
4-5 numbers parametrise the transition:

- α_{T_*} , vacuum energy fraction
- $v_{\rm w}$, bubble wall speed
- κ_{ϕ} , conversion 'efficiency' to $(\nabla \phi)^2$
- Transition rate:
 - H_* , Hubble rate at transition
 - β , bubble nucleation rate
 - ightarrow ansatz for $h^2\Omega_\phi$



NB: if applied to a *thermal* transition, energy in GWs would be

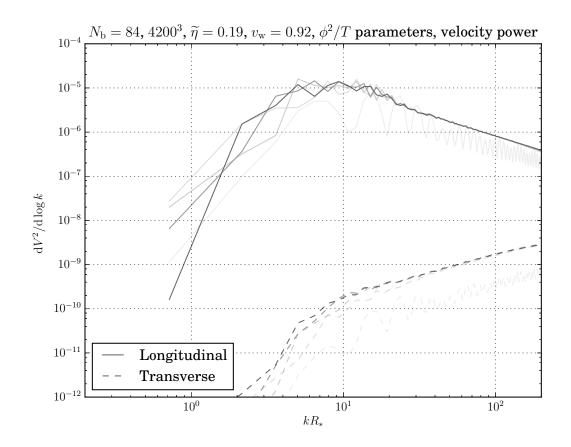
$$h^2 \Omega_{\rm GW} \propto \frac{0.11 v_{\rm w}^3}{0.42 + v_{\rm w}^2} \frac{\kappa_{\rm f}^2 \alpha^2}{(\alpha + 1)^2} \left(\frac{H_*}{\beta}\right)^2 \left(\frac{100}{g_*}\right)^{1/3}$$


assumes the shocks are **thin** and disappear after the bubbles collide: this is an underestimate: the dominant source from the fluid KE is sound waves

2: Velocity power spectra and power laws

- Weak transition: $\alpha_{T_N} = 0.01$
- Power law behaviour above peak is between ω^{-2} and ω^{-1}
- "Ringing" due to simultaneous bubble nucleation, not physically important

• Sourced by T_{ij}^{f} only

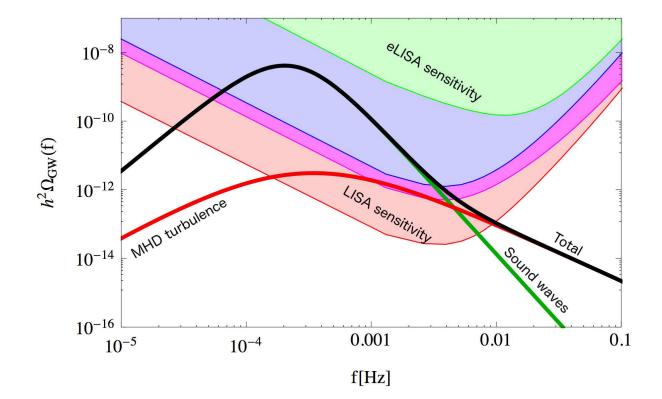


• Curves scaled by t: source 'on' continuously until turbulence/expansion

$$h^2 \Omega_{\rm sw} \propto v_{\rm w} \frac{\kappa_{\rm f}^2 \alpha^2}{(\alpha+1)^2} \left(\frac{H_*}{\beta}\right) \left(\frac{100}{g_*}\right)^{1/3}$$

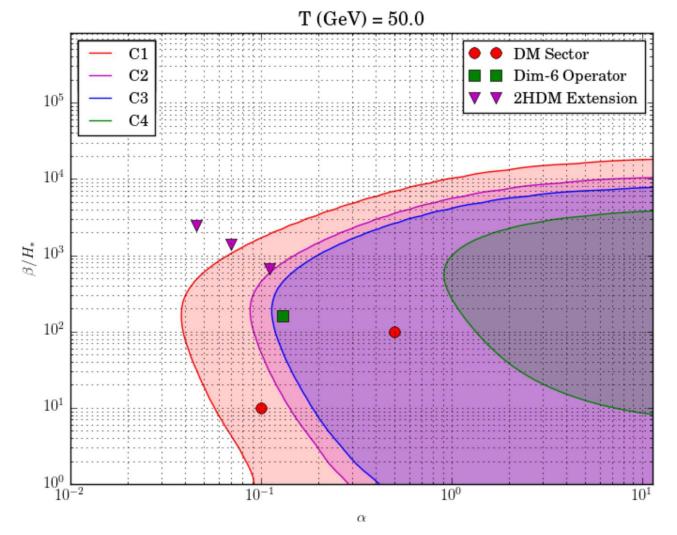
ightarrow power law ansatz for $h^2 \Omega_{
m sw}$

3: Transverse versus longitudinal modes – turbulence?

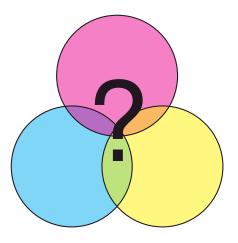


- Weak transition (small α): physics is linear; most power is in the longitudinal modes – acoustic waves, not turbulence
- Is turbulence is something that would happen later?
- Power spectrum would have causal ω^3 then $\omega^{-5/3}$ from Kolmogorov velocity power spectrum Caprini, Durrer and Servant

Putting it all together - $h^2\Omega_{gw}$


- We have three sources, $pprox h^2 \Omega_{\phi}$, $h^2 \Omega_{\rm sw}$, $h^2 \Omega_{\rm turb}$
- We know how they vary as a function of T_* , α_T , $v_{\rm w}$, β
- So we can (tentatively) say whether eLISA can detect the phase transition associated with a given model...

(example with
$$T_* = 100 {
m GeV}$$
, $\alpha_{T_*} = 0.5$, $v_{
m w} = 0.95$, $\beta/H_* = 10$)


Putting it all together - physical models to GW power spectra

Map your favourite theory to $(T_*, \alpha_{T_*}, v_w, \beta)$; we can put it on a plot like this

... and tell you if it is detectable by the different [e]LISA cases.

- Now:
 - Understand 'what happened during a first order PT'
 - Recent work shows source may be stronger than previously thought
 - Many models of first order EWPTs can produce observable gravitational waves, with lower wall velocities than expected – good for baryogenesis!

- Next:
 - Strong transitions, turbulence, instabilities still poorly understood
 - Connections with baryogenesis Katz and Riotto; Chala, Nardini, Sobolev; ...