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This talk

Thermal

Gravitational phase
waves transition Baryogenesis

First order EWPT can produce observable gravitational wave signatures
Future projects including LISA can probe a range of extended EW models
It's possible to believe that a phase transition that produces observable
GWs also could explain baryogenesis Megevand; Joyce, Prokopec, Turok; Fromme,

Huber, Seniuch; Caprini and No; ...
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What's “next”: [e]LISA

Peak sensitivity in mHz: well-placed to see background from EWPT
Daughter Daughter - armlength:
S/C O Q S/C T TN 1-5x106km

T million km / o0 \ T million km

e
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eLISA would have two arms (four laser links), 1M km separation
Launch as ESA's third large-scale mission (L3) in ¢.2034

Cheaper version of LISA (2 arms, smaller, noisier, shorter duration)
In light of events:

Restore missing arm?
Increase separation?

Extend mission duration?
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Thermal phase transitions

Extended Standard Model with rst-order PT.
Around temperature T

Scalar eld bubbles nucleate

— with rate

Bubbles expand, liberate latent heat

— characterised by T

Bubbles interact with plasma

— deposit kinetic energy with ef ciency
Friction from plasma acts on bubble walls
— walls move with velocity vy

Bubbles collide

— producing gravitational waves

, T Vwan (@nd T ):
3 (+1) parameters are all you need
Espinosa, Konstandin, No, Servant;
Kamionkowski, Kosowsky, Turner
(canget ¢from T and Vyg)
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Electroweak baryogenesis

Standard lore:

1. Bubbles of the broken phase nucleate and expand
— within the broken phase, the baryon number is frozen out
2. Particles in the plasma scatter off the bubble wall
— generating Cand CP asymmetries in front of the wall
3. Particles diffuse back into the symmetric phase
— sphaleron transitions convert this into a baryon asymmetry
4. Baryon asymmetry remains when bubble wall "catches up' — and in the
broken phase a baryon asymmetry is produced

Need:

A strongly rst-order phase transition (to avoid washout wi thin the bubble
walls) — Good for GWs!

Slow bubble wall velocity (must normally be subsonic, and slower the
better for diffusion processes to work) — Bad for GWs!

Key question: how does the GW power spectrum depend on the wall velocity?

4 of 13



What the metric sees at a thermal phase transition

Bubbles nucleate, most energy goes into plasma, then:

1. h? : Bubble walls and shocks collide — “envelope phase'

2. h? 4, Sound waves set up after bubbles have collided, before
expansion dilutes KE — "acoustic phase'

3. h? w: MHD turbulence — “turbulent phase'

These sources then add together to give the observed GW power:

2 2 2 2
h GW h + h sw+h turb

Each phase's contribution depends on the nature of the phase transition.
Now: explore steps 1-2 through two types of simulations:

1. The “envelope approximation'! h?
2. Field (‘Higgs') coupled by friction to uid U (plasma’)! h? o,
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1: Envelope approximation

Thin-walled bubbles, no uid
Bubbles expand with velocity vy,
Stress-energy tensor / R* on wall
Overlapping bubbles! GWs
Keep track of solid angle

Collided portions of bubbles source
gravitational waves

Resulting power spectrum is simple

One scale

(avg. bubble radius R )
Two power laws (! 3, | 1
Amplitude

) 4 numbers de ne spectral form
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1: Making predictions with the envelope approximation

4-5 numbers parametrise the transition:

0.12\\\\‘ \: T T T T T T T T T

T , vacuum energy fraction
Vw, bubble wall speed
, conversion “ef ciency' to (r )?

I

0.01- -

0.001:

I

0.0001;—/'

le-05:

|

Transition rate:

dinrg/dink  (GT))

1e-06 -

I

H , Hubble rate at transition
. bubble nucleation rate

le-07

L1l x \: 1 1 1 1 L1l x 1 1 1 1 1 L1 1 1 : 1
0.001 p * 0.01 0.1 k1
k (TC)

| ansatz for h?

NB: if applied to a thermal transition, energy in GWs would be

013 22 H “ 100 O
0:42+ vz ( +1)2 g

2
h® cw

assumes the shocks are thin and disappear after the bubbles collide: this is
an underestimate: the dominant source from the uid KE is sou nd waves
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2. Velocity power spectra and power laws

Fast de agration Detonation

Lo Ny, = 84, 42003, 77 = 0.19, v, = 0.92, ¢? /T parameters, velocity power
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Weak transition: T, =0:01
Power law behaviour above peak is between! 2 and! 1
“Ringing” due to simultaneous bubble nucleation, not physically important
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2. GW power spectra and power laws

Sourced by T;i only

Fast de agration Detonation

Curves scaled by t: source on' continuously until turbulence/expansion

22 H 100 *°
( +1)° g

| power law ansatz for h? g, 9 of 13

h? sw/! Vw




3: Transverse versus longitudinal modes — turbulence?

Np = 84, 420F, e = 0:19, v, = 0:92, 2=T parameters, velocity power
10 4

10 5t
10 ¢
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10 8

dv2=dlogk

10 °H
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10 12
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Weak transition (small ): physics is linear; most power is in the
longitudinal modes — acoustic waves, not turbulence

Is turbulence is something that would happen later?

Power spectrum would have causal ! 3then! >3 from Kolmogorov

velocity power spectrum Caprini, Durrer and Servant
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Putting it all together -  h? g,

We have three sources, h? ,h? o, h? wo
We know how they vary as a function of T , T, vy,

So we can (tentatively) say whether eLISA can detect the phase transition
associated with a given model. ..

(example with T =100GeV, 1 =0:5, vy =0:95 =H =10)
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Putting it all together - physical models to GW power spectra

Map your favourite theory to (T ; 1 ;Vw; ); we can put it on a plot like this

...and tell you if it is detectable by the different [e]LISA cases.
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Summary and outlook

Now:

Understand ‘what happened during a rst order PT'

Recent work shows source may be stronger than previously thought
Many models of rst order EWPTs can produce observable
gravitational waves, with lower wall velocities than expected — good for
baryogenesis!

Next:

Strong transitions, turbulence, instabilities still poorly understood
Connections with baryogenesis Katz and Riotto; Chala, Nardini, Sobolev; . ..
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