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knew about the values of the parameters – for example, that any loca-

tion on the sky is equally possible, that neutron-star masses are around 

1.4 solar masses, or that the total mass must be larger than that of a 

marshmallow. We now want to map out this probability distribution, 

to find the peaks of the distribution corresponding to the most prob-

able parameter values and also chart how broad these peaks are (to 

indicate our uncertainty). Since we can have many parameters, the 

space is too big to cover with a grid. Instead, we use computer codes 

that randomly sample the space and go on to construct a map of its 

valleys, ridges and peaks. (Doing this efficiently requires cunning tricks 

for picking how to jump between spots: exploring the landscape can 

take some time, we may need to calculate millions of different waves). 

Having computed the probability distribution for our parameters, we 

can now tell an astronomer how much of the sky they need to observe 

to have a 90% chance of looking at the source, give the best estimate 

for the mass (plus uncertainty), or even figure something out about 

what neutron stars are made of (probably not marshmallow). This is 

the beginning of gravitational-wave astronomy!

How does it Work? Parameter Estimation

Detecting gravitational waves is one of the great challenges in experi-

mental physics. A detection would be hugely exciting, but it is not the 

end of the story. Having observed a signal, we need to work out where 

it came from. This is a job for parameter estimation!

How we analyse the data depends upon the type of signal and what 

information we want to extract. I’ll use the example of a compact binary 

coalescence, that is the inspiral (and merger) of two compact objects 

– neutron stars or black holes (not marshmallows). Parameters that we 

are interested in measuring are things like the mass and spin of the bi-

nary’s components, its orientation, and its position. For a particular set 

of parameters, we can calculate what the wave should look like. (This is 

actually rather tricky; including all the relevant physics, like precession 

of the binary, can make for some complicated and expensive-to-calcu-

late waves). If we take away the wave from what we measured with the 

interferometer, we should be left with just noise. We understand how 

our detectors work, so we can model how the noise should behave; this 

allows to work out how likely it would be to get the precise noise we 

need to make everything match up.

To work out the probability that the system has a given parameter, we 

take the likelihood for our left-over noise and fold in what we already 
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Gravitational-wave astrophysics

Fundamentally new way to learn about the Universe: 

• Is General Relativity in the correct theory of Gravity?  

• What happens when matter is compressed to nuclear 
densities? 

• What are the properties of the population of compact 
objects? Especially the ones we cannot see? 

• Is the mechanism that generates gamma-ray bursts a 
compact binary coalescence?
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Compact Binary Coalescence

• Intrinsic parameters: primary 
and secondary masses and 
spins (and eccentricity)
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• Extrinsic: time, sky-position, 
distance, orientation, 
reference phase
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The GW150914 observation:

• How do we extract the astrophysics?
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Gravitational waveform models

• 2 models of the signal as a proxy for systematic errors: 
• Double-aligned-spin model (SEOBNRv2_ROM, [Taracchini, et al., 2014, 

Pürrer, 2014])


• Single-precessing-spin model (IMRPhenomPv2, [Hannam et al. Phys. 
2014])
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Gravitational waveform models

• 2 models of the signal as a proxy for systematic errors: 
• Double-precessing-spin model (SEOBNRv3, [Pan et al., 2014, Babak et 

al., 2016])


• Single-precessing-spin model (IMRPhenomPv2, [Hannam et al. Phys. 
2014])
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Masses from the inspiral and ringdown

• Chirp mass: 

• Mass ratio: q =
m1

m2
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• Total mass: 
ringdown 

(with total spin)



Effects of spins

• 2 spin vectors 

• Magnitude: orbital hang-up 

• Mis-alignment: precession and modulations

8

L̂
~S1

~S2



Effects of spins
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• We want the posterior probability of parameters   , given 
the data   . With Bayes' theorem: 

• Fit a model to the data (noise and signal models) 
• Build a likelihood function 
• Specify prior knowledge 
• Numerically estimate the resulting distribution (sampling 

algorithms)

Parameter Estimation
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• How close is the remainder to the mean?  

• Assumptions: gaussianity and stationarity

Likelihood
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m2 = 28.9+3.3
�4.3 M�

m1 = 35.4+5.0
�3.4 M�

• 2 models as a proxy for 
systematic errors:

• Double-precessing-spin 

model (SEOBNRv3)


• Single-precessing-spin 
model (IMRPhenomP)

GW150914
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m2 = 28.9+3.3±0.3
�4.3±0.3 M�

m1 = 35.4+5.0±0.1
�3.4±0.3 M�

GW150914

• 2 models as a proxy for 
systematic errors:

• Double-precessing-spin 

model (SEOBNRv3)
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model (IMRPhenomP)
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m2 = 28.9+3.3±0.3
�4.3±0.3 M�

m1 = 35.4+5.0±0.1
�3.4±0.3 M�

GW150914

• 2 models as a proxy for 
systematic errors:

• Double-precessing-spin 

model (SEOBNRv3)


• Single-precessing-spin 
model (IMRPhenomP) 

• Errors:
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signal strength
model inaccuracies



• 2 models as a proxy for 
systematic errors:

• Double-aligned-spin   

model (SEOBNRv2_ROM)


• Single-precessing-spin 
model (IMRPhenomP)

m1 = 14.2+8.3
�3.7 M�

m2 = 7.5+2.3
�2.3 M�

GW151226
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• 2 models as a proxy for 
systematic errors:

• Double-aligned-spin   

model (SEOBNRv2_ROM)


• Single-precessing-spin 
model (IMRPhenomP)

LVT151012
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m1 = 23+18
�6 M�

m2 = 13+4
�5 M�



• Final values fitted from 
Numerical Relativity 
simulations


• Final mass:


• Final (dimensionless) spin:


• ~3 solar mass radiated !

Mf = 62.2+3.7
�3.4 M�

af = 0.68+0.05
�0.06

Remnant black hole
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• Final values fitted from 
Numerical Relativity 
simulations


• Final mass:


• Final (dimensionless) spin:


• ~1 solar mass radiated

Remnant black hole
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Mf = 20.8+6.1
�1.7 M�

af = 0.74+0.06
�0.06



• Final values fitted from 
Numerical Relativity 
simulations


• Final mass:


• Final (dimensionless) spin:


• ~1.5 solar mass radiated !

Remnant black hole
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Mf = 35+14
�4 M�

af = 0.66+0.1
�0.09



Distance - inclination
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Distance - inclination

• Degeneracies in extrinsic 
parameters, strain   :


3 angles for the orientation:


Intrinsic waveform:


• Sampling in LALInference

[Raymond, Farr, 2014]
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Distance - inclination

GW151226 LVT151012
[LIGO-Virgo Collaboration, 2016] 27



Were the black-holes 
spinning?

• Weak constrains on spin 
magnitude 

• Very weak constrains on 
spin orientation 

• Due to Almost equal-
mass, face-off binary

[Raymond, 2012]

[LIGO-Virgo Collaboration, 2013]
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Were the black-holes spinning?
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Were the black-holes spinning?
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GW151226 LVT151012
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Observing run 1 to Observing run 2 and beyond

• Merging binary black holes exist in a broad mass range  

• New access to black holes spins (GW151226 at least 
one black-hole spinning) 

• Measured masses and spins consistent with both: 
• Isolated binary evolution (more aligned spins) 
• Dynamical formation (more misaligned spins) 

• Statistical errors dominate waveform systematical 
errors
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