Challenges for testing leptogenesis

Enrico Nardi INFN - Laboratori Nazionali di Frascati

TEV Particle Astrophysics 2016

CERN September 12-16, 2016

What does it mean to TEST a leptogenesis model?

Example: for the type1 seesaw (with R-handed neutrinos N)

<u>Direct tests:</u> Produce N's and measure the CP asymmetry in their decays

$$m_{
u} \sim rac{\lambda^2 v^2}{M_N} \sim \left(rac{\lambda}{10^{-6}}
ight)^2 \left(rac{1\,{
m TeV}}{M_N}
ight) \, \sqrt{\Delta m_{atm}^2}$$

Not possible!

(Just measuring the CP asymmetry in decays would require a RH neutrino factory!)

Caveat: for any generic "TeV scale" lepto/baryogenesis model:

Even producing the "leptogenesis heavy states" does not mean "testing the lepto/baryogenesis mechanism".

In short: an unambiguous test would be verifying that ALL the three Sakharov conditions are satisfied *quantitatively*.

Can we seek *indirect* evidences for Leptogenesis vs. Baryogenesis?

Regardless of the origin of the BAU:

At $T \gtrsim \Lambda_{EW}$ sphalerons relate B and L: $\Delta L \approx -2 \times \Delta B$

Sphaleron processes are "flavor blind":

Baryogenesis: $\Delta B \Rightarrow \Delta L$ thus necessarily $\Delta L_e = \Delta L_\mu = \Delta L_ au$

Leptogenesis. $\Delta L \Rightarrow \Delta B$: almost unavoidably $\Delta L_e \neq \Delta L_\mu \neq \Delta L_\tau$

So it seems we *only* have to measure the lepton flavor asymmetries of the relic neutrino background

Unfortunately, today it is no more possible to reconstruct the original "LAU"

 $T \lesssim 10 \, {\rm MeV}$: L_{α} -violated (oscillations)

2. $T \lesssim m_{\nu}$: L-"evaporation"

neutrinos come at rest | handedness is lost

Today:
$$T_{\nu}^{0} \sim 10^{-4} \,\mathrm{eV} \ll \Delta m_{atm,sol}^{2}$$

Quite likely, for the next future the best we can hope for is to collect "circumstantial evidences" in favor of a leptogenesis mechanism, by proving that (some of) the Sakharov conditions are (likely to be) satisfied

1. L violation:

Is provided by the Majorana nature of the N's: $|\ell_{\alpha}\phi\leftrightarrow N\leftrightarrow\ell_{\beta}\phi|$

Experimentally: we hope to see $0\nu2\beta$ decays

(requires IH or quasi degenerate ν 's)

If m_{ν} is measured, say @ $\gtrsim 0.1\,\mathrm{eV}$

and $0\nu2\beta$ is not seen?

LeptoG would certainly be disfavored

(and the simplest realizations ruled out)

2. *C* & *CP* violation:

we hope to see \mathcal{CP}_L (Dirac phase δ)

(and likely we will)

```
If CP_L is observed: Circumstantial evidence for LG (but not a final proof) If CP_L is not observed: LG is not disproved: (\delta \sim 0, \pi...)
```

However, the value of the LG CP asymmetries cannot be *quantitatively* related to the phases of U_{ν} . No (predictive) relation between δ , α , β and the ΔB of the Universe.

About the issue of LG and low energy CP phases:

The flavor dependent decay *CP* asymmetry:

$$\epsilon_{1\alpha} \propto \sum_{j \neq 1} \operatorname{Im} \left\{ \frac{M_1}{M_j} \left(\lambda \lambda^{\dagger} \right)_{j1} \lambda_{j\alpha} \lambda_{1\alpha}^* \right\}$$

Use for the λ the CI parametrization

[A. Casas, A. Ibarra, NPB618 (2001) 171]

$$\lambda_{j\alpha} = \frac{1}{v} \sqrt{M_j} R_{j\beta} \sqrt{m_\beta} (U^\dagger)_{\beta\alpha}$$
 where $RR^T = I$ (complex orthogonal)

$$\lambda_{j\alpha}\lambda_{1\alpha}^{*}\left(\lambda\lambda^{\dagger}\right)_{j1} = \frac{M_{1}M_{j}}{v^{4}}\left(\sum_{\beta}m_{\beta}R_{1\beta}^{*}R_{j\beta}\right)\left(\sum_{\rho\sigma}\sqrt{m_{\rho}m_{\sigma}}R_{j\sigma}R_{1\rho}^{*}U_{\alpha\sigma}^{*}U_{\alpha\rho}\right)$$

$$\sum_{\alpha} \longrightarrow \frac{M_1 M_j}{v^4} \left(\sum_{\beta} m_{\beta} R_{1\beta}^* R_{j\beta} \right)^2$$
 If the matrix **R** is real orthogonal: (1) $\varepsilon_1 = \sum_{\alpha} \varepsilon_{1\alpha} = 0$ (Purely Flavored LG);

- (2) $\varepsilon_{1\alpha}$ (and LG) depend just on U!

EN, Y.Nir, E.Roulet, J.Racker JHEP 0601 (2006) 164

3. Out of equilibrium dynamics in the early Universe:

(apparently the most difficult)

<u>Out-of-Eq. condition in the Seesaw:</u> When the temperat. drops to $T \approx M_N$ the Universe must be at most one N_R -lifetime old: $H^{-1}(M_N) \le \tau_N$; And if the N have to be produced thermally (by ID): $H^{-1}(M_N) \approx \tau_N$

$$\Gamma_N = \frac{M}{16\pi} \left(\lambda \lambda^{\dagger} \right)_{11}$$

$$\Gamma_N = \frac{M}{16\pi} \left(\lambda \lambda^{\dagger} \right)_{11} H|_M = \sqrt{\frac{8\pi G_N \rho(M)}{3}} \simeq 17 \cdot \frac{M^2}{M_P}$$

Rescale both by
$$16\pi \frac{v^2}{M^2}$$

Rescale both by
$$16\pi \frac{v^2}{M^2}$$
 $\widetilde{m} = \frac{v^2}{M} (\lambda \lambda^{\dagger})_{11}$ $m_* \approx 10^{-3} \text{eV}$

Quantitatively:

$$|\tilde{m} \sim m_* (\times 10^{\pm 2})|$$

can be OK

Thus $\widetilde{m}(\geq m_1) \approx \sqrt{\Delta m_{\odot}^2}, \sqrt{\Delta m_{\oplus}^2}$ is an optimal size to realize Sakharov III

Sakharov II: CP violation (in relation with v masses ...)

Computation of
$$\epsilon_{\alpha} = \frac{\Gamma_{\ell_{\alpha}} - \Gamma_{\bar{\ell}_{\alpha}}}{\Gamma_{N}}$$

It is useful to present the result as an expansion in $M_1/M_1 \ll 1$:

$$\epsilon_{\alpha} = \frac{-1}{8\pi(\lambda\lambda^{\dagger})_{11}} \sum_{j\neq 1} \operatorname{Im} \left\{ \lambda_{j\alpha} \lambda_{1\alpha}^{*} \left[\underbrace{\frac{3M_{1}}{2M_{j}} (\lambda\lambda^{\dagger})_{j1}}_{2M_{j}} + \underbrace{\frac{M_{1}^{2}}{M_{j}^{2}} (\lambda\lambda^{\dagger})_{1j}}_{4M_{j}^{2}} + \underbrace{\frac{5M_{1}^{3}}{6M_{j}^{3}} (\lambda\lambda^{\dagger})_{j1}}_{4M_{j}^{2}} + \ldots \right] \right\}$$

$$\cancel{U}: D_{5} = (\ell\phi)^{2} \quad L: D_{6} = (\bar{\ell}\phi^{*}) \not \partial (\ell\phi) \quad \cancel{U}: D_{7} = (\ell\phi)\partial^{2}(\ell\phi)$$

 $D_5 \Rightarrow$ neutrino mass operator; $D_6 \Rightarrow$ non unitarity in lepton mixing; $D_7 \Rightarrow$ spoils the DI bound.

Sakharov II:

The leading contribution to $\varepsilon^{(D_5)}$ can be bounded in terms of M_1 and m_y

$$\text{DI: } \left| \epsilon^{(D_5)} \right| = \left| \sum_{\alpha} \epsilon_{\alpha}^{(D_5)} \right| \leq \frac{3}{16\pi} \frac{M_1}{v^2} \left(m_3 - m_1 \right) \quad \overset{m_3 \approx m_1}{\longrightarrow} \quad \left| \epsilon^{(D_5)} \right| \leq \frac{3}{16\pi} \, \frac{\Delta m_{\oplus}^2}{2v^2} \, \frac{M_1}{m_3}$$

[S. Davidson & A. Ibarra, PLB 535 (2002)]

Requiring
$$\varepsilon^{(D_5)} > 10^{-6}$$
 implies: $M_1 \ge 10^8 - 10^9$ GeV

Considering also $\Delta L = 2$ washouts we can bound m_{v_3} from above

$$m_{\nu_3}^{\rm max} = 0.10 \, {\rm eV}$$

(The limit holds if some assumptions are satisfied)

[W. Buchmüller, P. Di Bari& M. Plümacher; S. Blanchet & P. Di Bari;] [T. Hambye,Y. Lin, A. Notari, M. Papucci & A. Strumia; ...]

To lower the LG scale we have to abandon connections with $m_v \otimes$

Even abandoning the $m_v - \varepsilon_{CP}$ connection, in general it is still not possible to reach scales much below $M_N \approx 10^7 \text{GeV}$

The no-go condition is a consequence of intrinsic requirements for the CP-violating loop diagrams:

- 1. Hard rescattering CP even phase: => loop states can go on shell
- **2.** L conserving loops do not yield any CP asymmetry [D.Nanopoulos, S.Weinberg PRD20 (1979)] which means that L must be violated inside the loop

So the cuts generate $\Delta L = 2$ *t*- and *s*- washout scattering diagrams

The argument is quite general (although not very well known)

Consider a decaying particle $X_1 \rightarrow Y_1Z(Y^*,Z^*)$ [$f \rightarrow f s, s \rightarrow f f, s \rightarrow s s$]

$$\gamma^{(fs)}(YZ \leftrightarrow \bar{Y}\bar{Z}) \simeq \frac{1}{\pi^3} \frac{T^3}{M_{X_2}^2} |g_2|^4 \to \frac{64}{\pi} M_{X_1} \left(\epsilon_{X_1}^{(fs)}\right)^2 \\
\gamma^{(ff')}(YZ \leftrightarrow \bar{Y}\bar{Z}) \simeq \frac{1}{\pi^3} \frac{T^5}{M_{X_2}^4} |g_2|^4 \to \frac{64}{\pi} M_{X_1} \left(\epsilon_{X_1}^{(ff')}\right)^2 \\
\gamma^{(ss')}(YZ \leftrightarrow \bar{Y}\bar{Z}) \simeq \frac{1}{\pi^3} \frac{T}{M_{X_2}^4} |g_2|^4 \to \frac{64}{\pi} M_{X_1} \left(\epsilon_{X_1}^{(ss')}\right)^2$$

Requiring:
$$\gamma(YZ \leftrightarrow \bar{Y}\bar{Z}) \lesssim H(M_{X_1})$$
 \longrightarrow $M_{X_1} \gtrsim 10^{19} \times \epsilon_{X_1}^2 \text{ GeV}$

D. Aristizabal Sierra, C.S. Fong, EN, E. Peinado, JCAP 1402, (2014) 013 J. Racker, JCAP 1403, (2014) 025, in the Inert Higgs doublet model

Possible ways to circumvent the argument:

Spoil the proportionality:

$$\gamma_{\Delta=2} \propto \epsilon_X^2$$

- 1. by enhancing the CP asymmetry ε_{X_1}
- 2. by suppressing the $\Delta=2$ washouts
- 1. For quasi degenerate N_R 's $(\Delta M/M << 1)$ ε_{X_I} can be resonantly enhanced (maximal effect when $\Delta M \approx \Gamma_N$)

A. Pilaftis and T.E. Underwood, NPB692 (2004) 303

Another possibility relies on resonant CP asymmetry enhancement in $H \rightarrow l N_R$ decays (CP asymmetry induced by thermal effects)

T.Hambye, D.Teresi, arXiv:1606.00017

2. Suppress the washouts with late/delayed decays

- (a.) if $m_{Y,Z} << M_{X_1}$: since the washouts $\gamma_{\Delta=2} \approx (T/M_{X_2})^n$ just assume a long lifetime $\Gamma_X << H$ (i.e. $T_{decay} << M_{X_{1,2}}$) (this requires an additional mechanism for X production)
- (b.) or assume $m_{Y,(Z)} \approx M_{X_1}$ in order to suppress exponentially the final state particle densities at $n_{Y,(Z)}$ at T not much below M_{X_1} . (This was applied to the inert Higgs doublet model showing that it can work)

J. Racker, JCAP 1403, (2014)025

All these solutions require a certain level of tuning in the choice of model parameters, at the cost of simplicity/aesthetics/naturalness

CONCLUSIONS

- LG <u>from decays</u> is intrinsically a high energy mechanism. To realize it at low scales requires abandoning the m_v-Sakharov II connection, and often also the m_v-Sakharov III (plus inventing non-trivial new mechanisms).
- Discovery of L violation and of CP violation in the lepton sector will indeed reinforce our confidence that LG is qualitatively adecuate.
 However, the issue of quantitative verifications will remain.
- Presently, I cannot see any way through which LG could parallel, for example, the quantitative success of BBN. (i.e.: predicting cosmological abundances from measurements in the labs.)

To lower the LG scale we have to abandon connections with m_v \otimes

A simple attempt: Couple N_R to a different SM fermion: (ℓ), e, Q, u, d

C.S.Fong et.al. JHEP 1308, 104

Scal	lar field	Couplings	В	L	ΔB	ΔL
/	$ ilde{\ell}$	$\bar{\ell}e\left(\epsilon\tilde{\ell}^*\right),\ \bar{Q}d\left(\epsilon\tilde{\ell}^*\right),\ \bar{Q}u\tilde{\ell}$	0	0	0	-1
'	\tilde{e}	$\bar{\ell}(\epsilon\ell^c)\tilde{e}$	0	+2	0	+1
/	$ ilde{Q}$	$\bar{\ell}d\left(\epsilon \tilde{Q}^{*} ight)$	+1/3	-1	0	-1
	\tilde{u}	$\overline{d^c}d ilde{u}$ $U(1)_{ m B}$	+1/3	0	0	0
*	$ ilde{d}$	$\bar{\ell}(\epsilon Q^c)\tilde{d},\; \overline{Q^c}(\epsilon Q)\tilde{d},\; \bar{u}e^c\tilde{d},\; \overline{u^c}d\tilde{d}$	_	_	_	_

A model for direct Baryogenesis.

(And an attempt to lower as much as possible the M_N scale)

After EWSB the colored scalar decay via N-v mixing injecting their associated ΔB

Special properties of this setup:

- After EWSB, a $\triangle B$ is generated, and with the *same sign* of $\triangle L$
- Observation of same sign dileptons $pp ext{->} \ell^{\pm}\ell^{\pm}jj$ at LHC signaling ΔL =2 violation does not invalidate the model F.F. Deppisch, J.Harz & M.Hirsch PRL 112(2014) 221601
- ΔL ≠ 0 processes can even attain chemical equilibrium
 (asymmetry protected by hypercharge A. Antaramian, L.J.Hall & A.Rasin PRD 49(1994) 381)

However, we find that still it is not possible to reach Scales much below $M_N \approx 10^7 \text{GeV}$