Strong EW phase transition from varying Yukawas

lason Baldes

TeVPA, CERN, 12 September 2016

Electroweak baryogenesis - basic picture

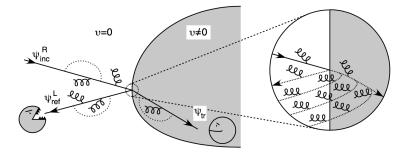
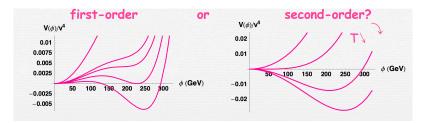


Image from - Gavela, Hernandez, Orloff, Pène, Quimbay [hep-ph/9406289]

- CP violating collisions with the bubble walls lead to a chiral asymmetry.
- Sphalerons convert this to a Baryon Asymmetry.
- This is swept into the expanding bubble where sphalerons are suppressed.

Electroweak baryogenesis - Requirements



Electroweak baryogenesis requires:

- A strong first order phase transition $(\phi_c/T_c\gtrsim 1)$
- Sufficient CP violation

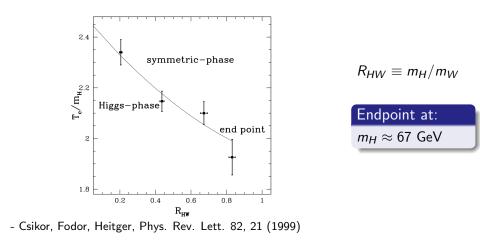
However in the SM:

- The Higgs mass is too large
- Quark masses are too small

We require new (EW-scale) physics!

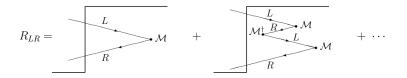
Electroweak phase transition

Lattice calculations show the SM Higgs mass is too large.



Higgs mass is too large in the SM. The Higgs potential must be modified.

Baryogenesis from charge transport with SM CP violation



$$\epsilon_{
m CP} \sim rac{1}{M_W^6 T_c^6} \prod_{i>j \atop u,c,t} (m_i^2 - m_j^2) \prod_{i>j \atop d,s,b} (m_i^2 - m_j^2) J_{
m CP}$$

- Gavela, Hernandez, Orloff, Pène, Quimbay [hep-ph/9406289],
- Huet, Sather [hep-ph/9404302].

SM quark masses are too small!

Could the solution be linked to flavour?

Yukawa interactions:

$$y_{ij}\overline{f}_L^i\Phi^{(c)}f_R^j$$

Possible solutions

- Froggatt-Nielsen
- Composite Higgs
- Randall-Sundrum Scenario

Froggatt-Nielsen Yukawas:

$$y_{ij} \sim \left(\frac{\langle \chi \rangle}{\Lambda}\right)^{-q_i+q_j+q_H}$$

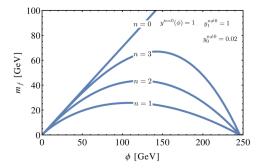
Some previous work: Baryogenesis from the Kobayashi-Maskawa phase

- Berkooz, Nir, Volansky - Phys. Rev. Lett. 93 (2004) 051301

- Split fermions baryogenesis from the Kobayashi-Maskawa phase
- Perez, Volansky Phys. Rev. D 72 (2005) 103522

We postulate varying Yukawas

Study the strength of the EWPT with varying Yukawas in a <u>model</u> independent way. - IB, Konstandin, Servant (1604.04526)

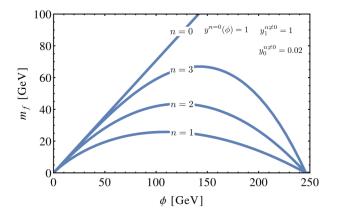


Ansatz

$$y(\phi) = egin{cases} y_1\left(1-\left[rac{\phi}{v}
ight]^n
ight)+y_0 & ext{ for } \phi \leq v, \ y_0 & ext{ for } \phi \geq v. \end{cases}$$

7/1

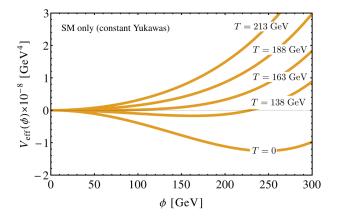
Effective Potential



Thermal correction

$$V_{
m eff} \supset -rac{g_*\pi^2}{90} T^4$$

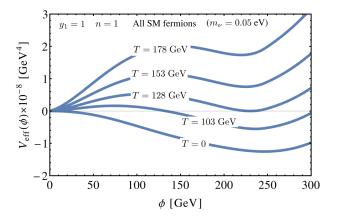
Effective Potential - SM case

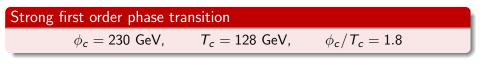


Second order phase transition $T_c = 163$ GeV.

$$V_{ ext{eff}} = V_{ ext{tree}}(\phi) + V_1^0(\phi) + V_1^{\,\prime}(\phi,T) + V_{ ext{Daisy}}(\phi,T)$$

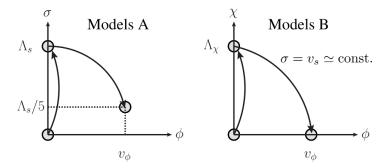
Effective Potential - Varying Yukawas





Including the flavon

Flavor Cosmology: Dynamical Yukawas in the Froggatt-Nielsen Mechanism - IB, Konstandin, Servant (1608.03254)

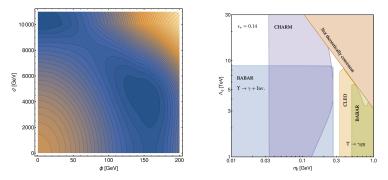


- Have to take into account from flavour physics.
- Flavon dof also affects ϕ_c/T_c .
- Generic prediction: light flavon with mass below the EW scale.

We have implemented this idea in some non-standard Froggatt-Nielsen scenarios.

Expermental signatures - Model A-2

Couple a flavon to each mass eigenstate - Knapen, Robinson (1507.00009). Here we assume a simple polynomial scalar potential up to dimension four + FN style coupling to *b*'s.

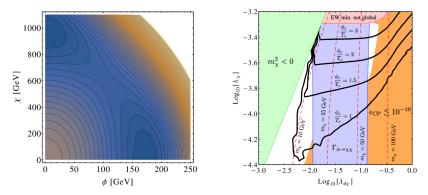


 m_{σ} = 0.13 GeV, ϕ_c/T_c = 1.1, $\epsilon_s \equiv v_s/\sqrt{2}\Lambda_s$ = 0.12, $\lambda_{s\phi}$ = 10⁻⁵.

$$\mathcal{L} \supset \frac{y_b}{\sqrt{2}} \left(\frac{\sigma}{\sqrt{2}\Lambda_s}\right)^2 \phi \overline{b}b \qquad \operatorname{Br}(\phi \to \overline{b}b\sigma) = 1.1\% \left(\frac{0.1}{\epsilon_s}\right)^2 \left(\frac{1 \operatorname{TeV}}{\Lambda_s}\right)_{12/14}^2$$

Model B-1: $Q_{\rm FN}(X) = -1/2$ - phase transition strength

Here we assume a simple polynomial scalar potential up to dimension four + the Yukawa sector.



$$\Lambda_\chi=1$$
 TeV, $\lambda_\chi=10^{-4}$, $\lambda_{\phi\chi}=10^{-2}$, $m_\chi=14$ GeV

$$\Gamma(\chi \to \overline{c}c) \approx 10^{-12} \text{ GeV} \left(\frac{m_{\chi}}{10 \text{ GeV}}\right) \left(\frac{v_{\chi}^{\text{today}}}{1 \text{ GeV}}\right)^2 \left(\frac{1 \text{ TeV}}{\Lambda_{\chi}}\right)^4$$
₁₃

Electroweak baryogenesis and flavour physics may be closely related.

Yukawa variation may allow us to address:

- The lack of a strong first order phase transition in the SM
- The insufficient CP violation for EW baryogenesis. See next talk!
 - Bruggisser, Konstandin, Servant (in preperation)
- The related limits on EDMs (this approach leads to a lack of EDM signals)

This offers additional motivation to consider low scale flavour models and their cosmology.

Other models of flavour are worth looking at too (not just Froggatt-Nielsen). e.g. RS1 - von Harling, Servant (in preperation) New experimental signatures should then be accessible as we further probe the Higgs potential!

$$egin{aligned} V_{ ext{eff}} &= V_{ ext{tree}}(\phi) + V_1^0(\phi) + V_1^T(\phi,T) + V_{ ext{Daisy}}(\phi,T) \ V_{ ext{tree}}(\phi) &= -rac{\mu_\phi^2}{2}\phi^2 + rac{\lambda_\phi}{4}\phi^4 \end{aligned}$$

$$V_1^0(\phi) = \sum_i \frac{g_i(-1)^F}{64\pi^2} \left\{ m_i^4(\phi) \left(\text{Log}\left[\frac{m_i^2(\phi)}{m_i^2(v)}\right] - \frac{3}{2} \right) + 2m_i^2(\phi)m_i^2(v) \right\}$$

Gives a large negative contribution to the ϕ^4 term.

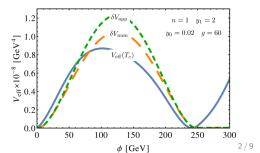
- Can lead to a new minimum between $\phi = 0$ and $\phi = 246$ GeV.
- Not an issue for previous $y_1 = 1$, n = 1 example.
- Can make phase transition weaker.

Effective Potential - one-loop $T \neq 0$ correction

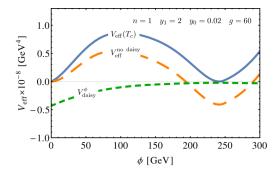
$$V_1^T(\phi, T) = \sum_i \frac{g_i(-1)^F T^4}{2\pi^2} \times \int_0^\infty y^2 \text{Log} \left(1 - (-1)^F e^{-\sqrt{y^2 + m_i^2(\phi)/T^2}}\right) dy$$
$$V_f^T(\phi, T) = -\frac{gT^4}{2\pi^2} J_f \left(\frac{m_f(\phi)^2}{T^2}\right)$$
$$J_f \left(\frac{m_f(\phi)^2}{T^2}\right) \approx \frac{7\pi^4}{360} - \frac{\pi^2}{24} \left(\frac{m}{T}\right)^2 - \frac{1}{32} \left(\frac{m}{T}\right)^4 \text{Log} \left[\frac{m^2}{13.9T^2}\right], \text{ for } \frac{m^2}{T^2} \ll 1,$$

$$\delta V \equiv V_f^T(\phi, T) - V_f^T(0, T)$$

$$\approx \frac{gT^2\phi^2[y(\phi)]^2}{96}$$

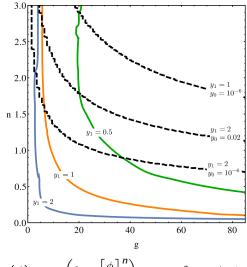


Effective Potential - daisy correction



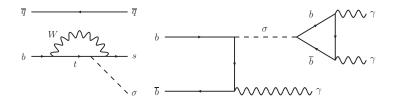
$$V_{\text{Daisy}}^{\phi}(\phi, T) = \frac{T}{12\pi} \Big\{ m_{\phi}^{3}(\phi) - \big[m_{\phi}^{2}(\phi) + \Pi_{\phi}(\phi, T) \big]^{3/2} \Big\}$$
$$\Pi_{\phi}(\phi, T) = \left(\frac{3}{16} g_{2}^{2} + \frac{1}{16} g_{Y}^{2} + \frac{\lambda}{2} + \frac{y_{t}^{2}}{4} + \frac{gy(\phi)^{2}}{48} \right) T^{2}$$

Strength of the phase transition with varying Yukawas



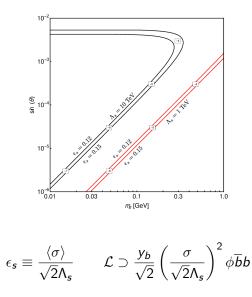
$$y(\phi) = y_1 \left(1 - \left\lfloor \frac{\phi}{v} \right\rfloor'' \right) + y_0 \quad \text{for} \quad \phi \leq v$$

Upsilon and B decays



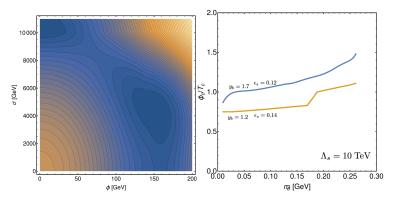
$$\epsilon_s \equiv \frac{\langle \sigma \rangle}{\sqrt{2}\Lambda_s} \qquad \mathcal{L} \supset \frac{y_b}{\sqrt{2}} \left(\frac{\sigma}{\sqrt{2}\Lambda_s}\right)^2 \phi \overline{b} b$$

Parameter curves



Model A-2: Disentangled hierarchy and mixing mechanism

Couple a flavon to each mass eigenstate - Knapen, Robinson (1507.00009)



Here we assume a simple polynomial scalar potential up to dimension four augmented with a σ dependent Yukawa term.

$$\epsilon_s \equiv rac{\langle \sigma
angle}{\sqrt{2}\Lambda_s} \qquad \mathcal{L} \supset rac{y_b}{\sqrt{2}} \left(rac{\sigma}{\sqrt{2}\Lambda_s}
ight)^2 \phi \overline{b} b$$

2

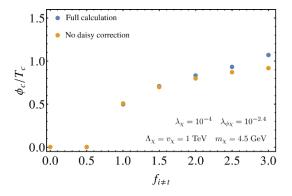
Models B

Two FN fields $\mathcal{L} = \tilde{y_{ij}} \left(\frac{S}{\Lambda_s}\right)^{\tilde{n}_{ij}} \overline{Q}_i \tilde{\Phi} U_j + y_{ij} \left(\frac{S}{\Lambda_s}\right)^{n_{ij}} \overline{Q}_i \Phi D_j$ $+ \tilde{f}_{ij} \left(\frac{X}{\Lambda_\chi}\right)^{\tilde{m}_{ij}} \overline{Q}_i \tilde{\Phi} U_j + f_{ij} \left(\frac{X}{\Lambda_\chi}\right)^{m_{ij}} \overline{Q}_i \Phi D_j$ v_{ϕ} Models B Λ_{χ} $\int_{V_{\phi}} V_{\phi} = v_s \simeq \text{const.}$

We assume a small VEV for the second FN field today: $\langle X \rangle \simeq 0$. The VEV $\langle S \rangle$ sets the Yukawas today while $\langle X \rangle$ varies during the EWPT.

Model B-1:
$$Q_{\rm FN}(X) = -1/2$$
Model B-2: $Q_{\rm FN}(X) = -1$ $\Lambda_{\chi} \gtrsim 700 \; {\rm GeV} \; (K - \overline{K})$ $\Lambda_{\chi} \gtrsim 2.5 \; {\rm TeV} \; (K - \overline{K})$ $\Lambda_{\chi} \gtrsim 250 \; {\rm GeV} \; (B_s - \overline{B_s})$ $\sqrt{\Lambda_{\chi} m_{\chi}} \gtrsim 500 \; {\rm GeV} \; (D - \overline{D})$

Model B-1: $Q_{\rm FN}(X) = -1/2$ - phase transition strength



Yukawas sector

$$\mathcal{L} \supset ilde{f}_{ij} \left(rac{X}{\Lambda_\chi}
ight)^{ ilde{m}_{ij}} \overline{Q}_i ilde{\Phi} U_j + f_{ij} \left(rac{X}{\Lambda_\chi}
ight)^{m_{ij}} \overline{Q}_i \Phi D_j + H.c.$$