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Introduction

Introduction

Leptogenesis is probably the most motivated explanation for the baryon
asymmetry of the Universe

based on nothing but the seesaw Lagrangian:

L ⊃ −1
2

mNαNc
αNα − YNαi H̃

†N̄αLi + h.c.

straightforward with mN > 108 − 109 GeV
[Davidson, Ibarra, 2002; Hambye, Lin, Notari, Papucci, Strumia, 2004]

To have it at lower scales (more testable), either:
quasi-degenerate N [Pilaftsis, 1997; Pilaftsis, Underwood, 2003; Asaka, Shaposhnikov, 2005; Garbrecht,

Herranen, 2011; Garny, Kartavtsev, Hohenegger, 2011; Dev, Millington, Pilaftsis, Teresi, 2014, 2015; . . . ]

3 N and cancellation of large Yukawa couplings (tuning? symmetries?) [Akhmedov,

Rubakov, Smirnov, 1998; Drewes, Garbrecht, 2012]

down to which mass can we go for successful leptogenesis?

up to which extent do we need to make these extra assumptions at low scale?
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Low-scale CP-violation dynamics

Low-scale resonant leptogenesis

CP violation in N ↔ LH decay

N

H

L

ε ε′

ε1 =
Im[(YNY†N)2

12]

(YNY†N)11(YNY†N)22
× 2 ∆mN Γ2

4 ∆m2
N + Γ2

2

thermal corrections to the masses: mi(T)2 ' M2
i (v(T)) + ci T2

cH ∼ g2, g′2, y2
t > cL

cN ∼ y2
N → 0

at T large enough H → NL decay opens
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Low-scale CP-violation dynamics

Parameter space for the decay processes
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Low-scale CP-violation dynamics

Thermal CP violation in H ↔ NL

H

L

L

N

N

H

the CP-violating cut vanishes kinematically at T = 0

CP violation if either H or L from/into the thermal bath [Giudice, Notari, Raidal, Riotto,

Strumia, 2003], but not both [Frossard, Garny, Hohenegger, Kartavtsev, Mitrouskas, 2012]

εCP(T) =
Im[(YNY†N)2

12]

(YNY†N)11(YNY†N)22
× 2 ∆m0

N ΓT(T)

4 ∆mN(T)2 + ΓT(T)2

thermal corrections to mass difference: ∆mN(T) = ∆m0
N + ∆mT

N(T)

with ∆mT
N(T) ' π T2

4 m2
N

Γ22 f (Γij/Γ22)

∆m0
N in the numerator (CP consistency) [Hohenegger, Kartavtsev, 2014]
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Thermalized N: lower bound on mN

CP asymmetry for successful leptogenesis - thermal N
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the more N stays at
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m̃ ≡ v2(YNY†N)11/mN
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due to ∆mN(T) vs ∆m0
N :
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(blue line)

absolute bound for N initially
at equilibrium: mN ''' 2 GeV
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The non-thermalized case: an efficient low-scale mechanism

CP asymmetry for successful leptogenesis - initially no N
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the less N thermalizes, the
smaller is nN , the larger is

εCP
γD

neq
N
|neq

N − nN | ∼ dnN/dz

H → NL but no NL→ H

asymmetry mostly produced at
T ∼ Tsph
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The non-thermalized case: an efficient low-scale mechanism

Lepton asymmetry for ∆mN/mN = 10−11
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The non-thermalized case: an efficient low-scale mechanism

Lepton asymmetry for ∆mN/mN = 10−8.5
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The non-thermalized case: an efficient low-scale mechanism

Lepton asymmetry for ∆mN/mN = 10−6
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The non-thermalized case: an efficient low-scale mechanism

Comparison with ARS mechanism(s)

In the ARS mechanism: [Akhmedov, Rubakov, Smirnov, 1998; Asaka, Shaposhnikov, 2005; . . . ]

initially no N

total L conserved at O(Y4
N)

purely flavoured asymmetries at O(Y4
N) which go as T2/(∆m2

N)

L asymmetry at O(Y6
N)

in the “linear” regime needs Tin > Tosc � Tsph (according to ∆mN)

With 3 RH neutrinos: [Akhmedov, Rubakov, Smirnov, 1998; Drewes, Garbrecht, 2012; Hernández, Kekic,

López-Pavón, Racker, Rius, 2015]

it can work with ∆mN ∼ mN ∼ GeV if
very large YN for 2 active flavours =⇒ large flavoured asymmetries at Tosc ∼ 106 GeV
very small YN for 3rd flavour =⇒ no washout
no tuning in ∆mN , tuning in m̃ ∼ 105∆msol

With 2 RH neutrinos: [Asaka, Shaposhnikov, 2005; Canetti, Drewes, Frossard, Shaposhnikov, 2013; . . . ]

it works up to ∆mN/mN / 10−3, allowing for some tuning of YN

for ∆mN/mN = 10−11, m̃ ≈ matm, all CP phases = 1:
H-decay/ARS ≈ 7 for mN = 2 GeV, H-decay/ARS ≈ 12 for mN = 10 GeV
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Conclusions

Conclusions

for mN < O(100 GeV), standard seesaw model, novel mechanism:
leptogenesis via Higgs decay H ↔ NL [T. Hambye and DT, PRL 117 (2016) 091801]

key points:
CP violation from thermal effects, zero at T = 0
Sakharov condition: decay product out-of-equilibrium, not the decaying particle
for initially no N: it boosts the asymmetry (contrary to high-scale)

it occurs at T ∼ Tsph

for N initially at equilibrium: mN > 2 GeV

testable at SHiP, FCC-ee, ILC, . . .

tuning comparable to ARS mechanism(s), less than TeV-scale
current uncertainties (= future work)

put together H-decay and ARS leptogenesis (which dominates when?)
include thermally-enhanced processes, O(few) corrections to the rates [Besak, Bodeker,

2012; Ghisoiu, Laine, 2014; . . . ]

more careful treatment of the washout for large YN (testable regime)

apply to models beyond minimal seesaw: [J. Heeck and DT, arXiv:1609.XXXXX]

Daniele Teresi Higgs doublet decay as the origin of the baryon asymmetry 11 / 11


	Introduction
	Low-scale CP-violation dynamics
	Thermalized N: lower bound on mN
	The non-thermalized case: an efficient low-scale mechanism
	Conclusions

