Tests of general relativity with gravitational waves

Chris Van Den Broeck

Nikhef

On behalf of the LIGO Scientific Collaboration and the Virgo Collaboration

TeVPA 2016, 12-16 September 2016, CERN
Binary black hole mergers as laboratories to test GR

- Empirical access to genuinely strong-field dynamics of gravity
- Pure spacetime process
- Rich phenomenology

Yunes et al., arXiv:1603.08955
The events as seen in the detectors

- Test GR for different aspects of the coalescence process
 - GW150914: short inspiral; merger and ringdown visible
 - GW151226: mostly inspiral visible

1. Residual data after subtracting best-fitting waveform

- Subtract from data the best-fitting waveform model (GR prediction)
- Residual data statistically consistent with detector noise near GW150914
(2) Consistency of masses and spins of initial and final objects

- Measure masses, spins of component black holes from *inspiral* signal
- General relativity allows to predict mass, spin of final black hole
- Compare with mass, spin of final black hole obtained from *post-inspiral*
(2) Consistency of masses and spins of initial and final objects

- Measure masses, spins of component black holes from *inspiral* signal
- General relativity allows to predict mass, spin of final black hole
- Compare with mass, spin of final black hole obtained from *post-inspiral*
(3) Did the final object ring down as predicted?

- Evidence for a least-damped “quasi-normal” mode?
 - Fit damped sinusoid starting at different times after merger
 - Frequency, damping time consistent with expectation

Testing the black hole no-hair theorem?

- If multiple quasi-normal modes could be observed: test of no-hair theorem
 - Damping times τ_{nlm} and frequencies f_{nlm} only depend on M_f and a_f
 - Hence only two of them are independent \rightarrow consistency test

- For multiple quasi-normal modes to be visible, need system with
 - Asymmetric component masses
 - More misalignment of orbital angular momentum with line of sight
(4) Constraining the graviton Compton wavelength

\[E^2 = p^2 c^2 + m_g^2 c^4 \]
\[\delta \Phi(f) = -\frac{\pi D c}{\lambda_g^2 (1+z)} f^{-1} \]
\[\lambda_g = \frac{\hbar}{m_g c} \]

\[m_g < 1.2 \times 10^{-22} \text{ eV/c}^2 \]

(5) No constraint on non-GR polarization states

- Metric theories of gravity allow for up to 6 polarization states
- Compare polarizations from GR with simple case of pure breathing mode
- Cannot distinguish between them:
 \[\log B^{\text{GR}}_{\text{scalar}} = -0.2 \pm 0.5 \]
- Need larger network of detectors with different orientations
 - Advanced LIGO
 - Advanced Virgo
 - KAGRA
 - LIGO-India

(6) Parameterized tests of the coalescence process

- Allow for fractional changes in parameters with respect to GR values
 \[p_i \rightarrow (1 + \delta \hat{p}_i) p_i \]

 - Inspiral: \(\{ \delta \hat{\varphi}_i \} \)
 - Intermediate: \(\{ \delta \hat{\beta}_i \} \)
 - Merger-ringdown: \(\{ \delta \hat{\alpha}_i \} \)
(6) Parameterized tests of the coalescence process

- **GW150914:**
 First-ever empirical bounds on high-order post-Newtonian inspiral parameters
(6) Parameterized tests of the coalescence process

GW150914

inspiral

intermediate

merger-ringdown

(6) Parameterized tests of the coalescence process
(6) Parameterized tests of the coalescence process

(6) Parameterized tests of the coalescence process

Combined bounds on post-Newtonian inspiral parameters

Combined bounds on post-Newtonian inspiral parameters

![Graph showing combined bounds on post-Newtonian inspiral parameters. The graph plots the PN order against the mass ratio (\(\delta \)). Points are color-coded for different detections (GW150914, GW151226, GW151226+GW150914) and labeled by PN order (0PN, 0.5PN, 1PN, 1.5PN, 2PN, 2.5PN, 3PN, 3PN(0), 3.5PN). The green dot labeled "massive graviton" indicates a point of interest.](image)
Combined bounds on post-Newtonian inspiral parameters

- Lowest-order spin-orbit interaction
- Dynamical self-interaction of spacetime

- GNW150914
- GW151226
- GW151226+GW150914

PN order:
- 0PN
- 0.5PN
- 1PN
- 2PN
- 2.5PN
- 3PN

Labeled areas:
- 1.5PN

- Lowest-order spin-orbit interaction
- Dynamical self-interaction of spacetime
Combined bounds on post-Newtonian inspiral parameters

Spin-spin interaction
Outlook

- Genuinely strong-field dynamics of spacetime probed for the first time
 - Consistency of masses and spins between inspiral and post-inspiral
 - End of the signal consistent with least-damped quasi-normal mode
 - New dynamical bound on the graviton mass
 - First constraints on high-order post-Newtonian coefficients

- Future observations:
 - Seeing more than one quasi-normal mode would allow for test of no-hair theorem
 - Test of second law of black hole mechanics
 - Constraints on non-GR polarization states with network of detectors
 - Combining information from all future detections will set increasingly sharper bounds on PN coefficients

- For now: all tests performed show no disagreement with GR
Backup slides
What about specific alternative theories of gravity?

- With exception of λ_g bound and alternative polarizations study, did not look into implications for specific alternative theories of gravity:
 - Einstein-aether theory
 - Quadratic curvature corrections
 - Dynamical Chern-Simons theory
 - ...

- or the possibility of compact binaries composed of more exotic objects:
 - Boson stars
 - Gravastars
 - ...

- We lack accurate predictions for inspiral-merger-ringdown GW signals in specific alternative theories
 - Would be of interest if waveform models developed in near future
A wish list

- More asymmetric component masses
 - Sub-dominant harmonics of the signal become better visible (also inspiral)
 - If also high total mass, multiple QNMs in the ringdown can be seen

- Systems with lower total mass
 - More of the inspiral in sensitive band of detectors
 - Better bounds on PN parameters

- Significantly misaligned spins
 - Precession of spins and orbital plane
 - Spin-orbit and spin-spin interactions

- Higher SNRs
 - GW150914 would be factor ~ 3 louder in aLIGO at final design sensitivity

- Binary neutron star coalescences
 - Constrain new kinds of GR violations, e.g. dynamical scalarization

- Lots of detections!
 - Combine information from all detections to place stronger bounds on PN and other coefficients