

Recent Results from the PandaX-II Dark Matter Experiment

Jianglai Liu Shanghai Jiao Tong University On behalf of C PANDAX Collaboration

WIMP direct detection & LHC search

Excellent case for more sensitive DM detectors and complementarity between collider and direct searches!

Dual phase xenon TPC

DM direct detection: recoil of atomic nucleus in the detector (Goodman & Witten, 1985), <10 keV_{ee} energy

PandaX experiment

PandaX-I: 120 kg DM experiment 2009-2014

PandaX-II: 500 kg PandaX-xT: DM experiment 2014-2017

multi-ton (~4-T) DM experiment 2017- or 2018-

PandaX-III: 200 kg to 1 ton HP gas ¹³⁶Xe **OvDBD** experiment 2016-

PANDAX = Particle and Astrophysical Xenon Experiments

China Jinping underground lab

Deepest in the world ($1\mu/week/m^2)$ and Horizontal access!

PandaX collaboration

Started in 2009, ~50 people

- Shanghai Jiao Tong University (2009-)
- Peking University (2009-)
- Shandong University (2009-)
- Shanghai Institute of Applied Physics, CAS (2009-)
- University of Science & Technology of China (2015-)
- China Institute of Atomic Energy (2015-)
- Sun Yat-Sen University (2015-)
- Yalong Hydropower Company (2009-)
- University of Maryland (2009-)
- Alternative Energies & Atomic Energy Commission (2015-)
- University of Zaragoza (2015-)
- Suranaree University of Technology(2016-)

First delivery of PandaX equipment to Jinping

Results from PandaX-I

Phys. Rev. D 92, 052004(2015) 10⁻⁴⁶ WIMP-nucleon cross section (cm³) , p.01 , 10⁻⁴² ndaX-I 2015 10⁻⁴³ ION100, 2012 2013 10⁻⁴⁴ 10-45 DAMA 3 siama 10⁻⁴⁶ 10² 50 60 70 30 3 5 6 7 8 9 1 0 20 40 WIMP mass (GeV/ c^2)

Completed in Oct.
2014, with 54.0 x 80.1
kg-day exposure

Data strongly disfavor all previously reported claims

 Competitive upper limit for low mass WIMP among xenon experiments

PandaX-II

New inner vessel with clean SS

New and taller TPC

More 3" PMTs and improved base design with split -ve and +ve HV

New isolated skin veto region

Detector construction

2016/9/12

TeVPA 2016, CERN

Putting all together

Run history

Run8+run9=98.7 days, exposure:3.3x10⁴ kg-day
Largest dual phase xenon experiment producing science data

Results from PandaX-II run 8

 Cut-and-count analysis with 2 candidates and 3.2(0.7) expected background

Low mass region: competitive with SuperCDMS 2014

 High mass region: similar exclusion limit as XENON100 225-day

Items	Status in Run 9		
Krypton level	Reduced by x10		
Exposure	Increased x4 (79.6 vs 19.1 day)		
ER calibration	Using tritium calibration		
NR calibration	Statistics x6		
Analysis	Improved position reconstruction		
Background	Accidental background suppressed more than x3 using BDT		

Typical single scattering event

Electron lifetime evolution

Dominated the uniformity correction (but well self-calibrated)
Built into the DM and background signal model

TeVPA 2016, CERN

Extraction of detector parameters

$$E_{ee} = W \times \left(\frac{\text{S1}}{\text{PDE}} + \frac{\text{S2}}{\text{EEE} \times \text{SEG}}\right)$$

Gaussian fits to all ER peaks in data

- Uncertainty on each data point estimated using energy nonlinearity
- Linear fit in S1/E vs S2/E to extract PDE and EEE

NR calibration

162.4 hours of AmBe data taken, with ~3400 low energy single scatter NR events collected

NR median curve and width in agreement with NEST prediction

NR detection efficiency

NR efficiency obtained by data/MC(NEST) ratio

□ S1 [3,45] PE, S2 [100_{raw}, 10000_{corr}] PE

Adopted 1.1 keV_{nr} threshold

 NR efficiency function agrees with that obtained in tritium ER calibration

ER calibration with CH_3T

18.0 hours of tritium data taken, with ~2800 low energy ER events collected in the FV
9 events leaked below NR median, (0.32 ± 0.11)%
Consistent with Gaussian expectation

Low energy rate in run 9

 Events selected in the FV with energy <10 keV_{ee}

 ~2 mDRU in the FV on average, lowest reported background level in dual phase xenon

Decrease over time due to ¹²⁷Xe decay ⁸⁵Kr

- 0.43% β decay with delayed ^{85m}Rb γ deexcitation
- Uniformly distributed
- Significantly reduced (x10) after the distillation

¹²⁷Xe

Average ¹²⁷Xe rate in the DM search region: 0.42±0.10 mDRU

2016/9/12

Accidental background

Isolated S1 and S2 were selected and randomly paired to determine accidental distribution

Further
suppressed this
background by x3
using boosted
decision tree
(BDT) technique

BDT discrimination power (examples)

Accidental S1 and S2 lack intrinsic correlations

 Single S2 likely from gate and gas region (small width, large asymmetry)

2500 3000 3500 S2 width [ns] 4000

4500

5000

0.01

0.01

1000

1500

2000

Final candidates (run 9)

Gray: all Red: below NR median Green: below NR median and in FV

 389 total candidates found in the FV (329 kg)

1 below NR median

 Outside FV, edge events more likely to lose electrons, leading to S2 suppression

Final candidates (run 9)

Final candidates (run 8)

Summary of final candidates

	ER	Accidental	Neutron	Total	Total
				Expected	observed
Run 8	622.8	5.20	0.25	628 ± 106	734
Below NR. median	2.0	0.33	0.09	$2.4{\pm}0.8$	2
Run 9	377.9	14.0	0.91	$393 {\pm} 46$	389
Below NR median	1.2	0.84	0.35	$2.4{\pm}0.7$	1

Total exposure: 33,000 kg-day

Cross section limit

Minimum exclusion:
2.5x10⁻⁴⁶ cm² @ 40
GeV/c², improved x10
from run 8, >x2 from LUX
2015

 More constraining result could be obtained with a tuned NR model (in some aspects agreeing better with NR calibration).
Conservatively used NEST model for official results

Cross section limit

 LUX 332-day results presented at IDM (arxiv:1608.07648) with similar exposure and limit (slightly more constraining than PandaX towards high mass)

 This is the first low background result from PandaX-II, a long life (~500 live-day) ahead of this!

Summary and outlook

PandaX-II has reached the forefront of the DM search!

- □ 79.6 live-day of dark matter data with much suppressed background (12⇒2 mDRU)
- In combination with commissioning run (19.1 day), ~33,000 kgday exposure in total. No DM particles found
- The WIMP-nucleon elastic SI scattering cross sections are constrained to <2.5x10⁻⁴⁶ cm² at 40 GeV/c². Other physics results (e.g. SD) expected soon
- Continue PandaX-II data taking till end of 2017

In preparation for PandaX-xT and PandaX-III!

Improved position reconstruction

Major difficulties:

- 3" PMT: optimizing photon collection, but naively causing coarse quantization
- Complicated optics, particularly due to the photon reflections on the PTFE reflector

Construct and fit photon acceptance function(PAF) for each PMT

$$\eta(r) = A \cdot \exp(-\frac{a \cdot \rho}{1 + \rho^{1 - \alpha}} - \frac{b}{1 + \rho^{-\alpha}}), \quad \rho = \frac{r}{r_0}$$

- Event-by-event max likelihood fit on charge pattern to reconstruct position
- Iterations to improve PAFs based on data

V. N. Solovov *et al, IEEE* doi: 10.1109/TNS.2012.2221742

NR data vs model comparison

Data and untuned NEST agree in the median and width of NR band

Small discrepancy was observed in detailed shape for small S1 and S2. A tuned NEST model could improve this

Detailed investigation is underway

Internal background distribution

33.2keV from ¹²⁷Xe event R² distribution

²¹⁰Po events from the PTFE wall

Final selection cuts

- Horizontal cut determined by distribution of events with S1 between [45,200] PE and suppressed S2
- Vertical cut: upper boundary consistent with the previous analysis; lower boundary determined by X-events according to ¹²⁷Xe MC
- □ FV in Run 9 = 328.9 kg
- S1 cut:[3,45]PE & S2 cut: [100_{raw}, 10000_{corr}] PE, consistent with previous analysis