

The Search for Light WIMPs with **CDMSlite and SuperCDMS SNOLAB**

Alan E. Robinson **TeVPA 2016** 16 September 2016

SuperCDMS Collaboration

California Inst. of Tech.

CNRS-LPN*

Durham University

FNAL

NISER

NIST*

Northwestern U.

PNNL

Queen's University

Santa Clara U.

South Dakota SM&T

Stanford University

Texas A&M University

U. British Columbia

U. California, Berkeley

U. Florida

U. Minnesota

U. South Dakota

Weakly interacting massive particles (WIMPs)

- Why 100 GeV/c² WIMPs?
 - WIMP miracle weak scale couplings and mass match thermal freeze-out relic abundance – being excluded by LHC and liquid Xe experiments.

Why Light WIMPs?

What could a thermal relic mass be?

- Well motivated models exist
 - Asymmetric DM
 - Models related to the matter/antimatter asymmetry
 - Hidden sector
 - New U(1) field that mixes kinematically with the photon
 - Consistent with muon g-2 anomaly

See Gordan Krnjaic, FNAL Users Meeting 2016

Dark Matter Direct Detection

Different types of searches required at low vs. high mass.

Light WIMP detectors

- Experimental approaches
 - SuperCDMS & EDELWEISS
 - Cryogenic (mK) Ge & Si with charge and phonon sensors
 - CRESST
 - Cryogenic scintillators with phonon and light sensors
 - DAMIC
 - Ultra-low noise CCD measuring charge
- Phonons provide more information
 - Average energy of information carriers
 - ~20 eV per scintillation photon
 - ~3 eV per electron/hole pair
 - ~0.001 eV per athermal phonon

SuperCDMS Soudan (2010–2015)

Ge iZIP (interleaved Z-sensitive Ionization and Phonon sensors)

- Measure phonons and ionization
 - Athermal phonons measured with Transition Edge Sensors
 - e⁻/h⁺ pairs drifted across ±2 V bias.
 - 15 detectors, 0.6 kg each at ~50 mK

CDMS Low Ionization Threshold Experiment

How do we optimize resolution?

- Internal amplification of ionization
 - Drift across bias voltage creates additional phonons
- Data at Soudan w/ retrofitted iZIPs at 70V bias.

Phonon energy = $E_r + n_{eh} e\Delta V$

Recoil Energy # of e-/h+ pairs Bias potential

Exploiting Differences in Ionization Yield

- Electron recoils produce 1 e⁻/h⁺ per 3 eV.
- Nuclear recoils produce <1 e⁻/h⁺ per 20 eV below 300 eV.
 - ER backgrounds are boosted out of low-energy region.
 - Potential for ER/NR discrimination if single e⁻/h⁺ are resolved

Phonon energy = $E_r + n_{eh} e\Delta V$ Recoil Energy # of e-/h+ pairs Bias potential

CDMSlite Analysis

PRL **116** 071301 (2016)

- Thresholds at 75 eV_{ee} (period 1) and 56 eV_{ee} (period 2) limited by low-frequency vibrations.
- Fiducial volume limited by high radius events.

CDMSlite Analysis

World leading low-mass WIMP limits.

Final data set, with lower hardware threshold, under analysis.

SuperCDMS SNOLAB

 Generation 2 dark matter direct detection experiment

Supported by DOE, NSF& CFI (USA & Canada)

 Facility designed to support later generation detectors

SuperCDMS SNOLAB Conceptual Design

SuperCDMS SNOLAB

- Lower threshold
 - Phonon optimizedHV detectors with5 eV resolution
- Lighter Si Target
 - In addition to Ge detectors
- Lower backgrounds
 - Remaining
 cosmogenic ER
 backgrounds
 dominate at low
 mass

Improved Phonon Resolution

- Optimized design of sensor and detector bandwidths
 - Athermal phonon collection time
 - Maximize collection area
 - Quasi-particle collection time
 - TES heat capacity / thermal conductance to bath
 - Electronics
- Limiting Resolution ∞ T³
 - 15 mK base temperature vs. >50 mK at Soudan
- Design resolutions
 - 5 (10) eV for Si (Ge) HV
 - 25 (50) eV for Si (Ge) iZIP

Si-32 and Tritium Backgrounds

³²Si & ³H Low-energy β continuum

- Dominant backgrounds for SuperCDMS SNOLAB HV
- DAMIC measured ³²Si 80⁺¹¹⁰/₋₆₅ (90% conf.) counts/kg/day

EDELWEISS measured 82±21 ³H atoms/kg/day produced at

sea level

Consistent with CDMSlite background & calculations

publication in preparation

Radioactivity in materials

- Environmental background contolled to below the ³H contribution of ~21 counts/kg/keVee/yr
 - Surface events
 - Limited radon exposures
 - Rejection based on phonon partition and pulse timing
 - Gammas
 - Limited above ground cosmogenic exposures
 - Material screening
 - Cavern environment
 - Shielding
 - Deep underground site

Phonon sensor layout of HV detectors

SuperCDMS SNOLAB Reach

Expect world's best sensitivity for <10 GeV WIMPs

Updated sensitivity projections to be released this month.

SuperCDMS SNOLAB Upgrades

- Facility designed to host an upgraded experiment to reach the neutrino floor.
 - Requires background reduction and/or demonstrated ER/NR discrimination in HV detectors.

Extra Slides

Phonon Pulse Shape

Fast (diffusive) and slow (ballistic) phonon absorption

Ionization Yield Calibrations

- Response to nuclear recoils at low energy requires calibration
 - Photoneutron sources
 - Thermal neutron capture recoils
 - D-D neutron scattering calibration planned

Ionization yield in Si

Ionization yield in Ge

