Determining the Local Dark Matter Density

Hamish S!lverwood

GRAPPA, University of Amsterdam

Collaborators:
Sofia Sivertsson (OKC Stockholm) Pascal Steger (ETH Zurich) Justin Read (U Surrey) Gianfranco Bertone (GRAPPA)

Based on:
Including additional Rotation Curve material from:
Fabio locco (ICTP-SAIFR Sao Paolo), Miguel Pato (OKC Stockholm), Gianfranco Bertone (GRAPPA)

TeVPA 2016, CERN.

Silverwood et al., MNRAS 469, 2016,
arXiv: I 1507:0858I
Sivertsson et al., in preparation
University of Amsterdam

Why do we care about local DM density?
Direct Detection (e.g، PandaX, XENONIT, LUXX, DEAP3600...)
$\frac{\mathrm{d} R}{\mathrm{~d} E}=\frac{\rho_{\odot}}{m_{\mathrm{DM}} m_{\mathcal{N}}} \int_{v>v_{\text {min }}} \mathrm{d}^{3} v \frac{\mathrm{~d} \sigma}{\mathrm{~d} E}(E, v) v f(\vec{v}(t))$

Indirect Detection through Solar Capture and annihilation to neutrinos (IceCube, Antares, KM3NeT, Super-Kamiokande)

$$
\left.\left.\begin{array}{l}
C^{\odot} \approx 1.3 \times 10^{21} s^{-1}\left(\frac{\rho_{\text {local }}}{0.3 \mathrm{GeV} \mathrm{~cm}}{ }^{-3}\right.
\end{array}\right)\left(\frac{270 \mathrm{~km} \mathrm{~s}^{-1}}{v_{\text {local }}}\right)\right)
$$

Scans of theoretical
parameter space, eg Supersymmetry

Relic Axion Searches (ADMX, CULTASK, CAST, RADES, CASPEr...)

$$
P=\frac{2 \pi \hbar^{2} g_{a \gamma \gamma}^{2} \rho_{\mathrm{DM}}}{m_{a}^{2} c} \cdot f_{\gamma} \cdot \frac{1}{\mu_{0}} B^{2} V_{n l m} \cdot Q
$$

How do we measure local DM density?

- Global measurements (rotation curves):
- powerful, but have to assume global properties of the halo.
e.g. Dehnen \& Binney I998; Weber \& de Boer 20I0; Catena \& Ullio 20IO; Salucci et al. 20I0; McMillan 20II;
* Nesti \& Salucci 2013; Piffl et al. 2014; Pato \& locco 2015; Pato et al. 2015

- Local measurements:

 larger uncertainties but fewer assumptions e.g. Jeans I922; Oort I932; Bahcall 1984; Kuijken \& Gilmore 1989b, I991; Creze et al. 1998; Garbari et al. 20I2; Bovy \& Tremaine 2012; Smith et al. 2012; Zhang et al. 20I3; Bienaymé et al. 2014
Global methods

Fitting a DM profile on top of baryons

The Milky Way: testing expectactions

locco, Pato, Bertone:

The Milky Way: testing expectactions (with no additional assumptions)

[IIocco, Pato, Bertone, Nature Physics 2015] TeVPA 2016, CERN.

locco, Pato, Bertone:

The Milky Way:

the importance of baryon modelling

Complementarity of Local and Global Measurements

Local
Global
a) $\rho_{\mathrm{dm}}<\rho_{\mathrm{dm}, \mathrm{ext}}$

Prolate Halo

Local Global
b) $\rho_{\mathrm{dm}}>\rho_{\mathrm{dm}, \mathrm{ext}}$

Oblate Halo

TeVPA 2016, CERN.

Our Method - Basics

- Local measurements in z-direction and R-direction
- Data points are positions and velocities for a set of tracer stars in a - cylindrical volume.
- data is binned to get tracer density and velocity dispersions

Our Method - Integrated Jeans Equations

- We need to link positions and velocities to the mass distribution
- Tracer stars follow the Collisionless Boltzman Equation:

$$
\frac{d f}{d t}=\frac{\partial f}{\partial t}+\nabla_{x} f \cdot \mathbf{v}-\nabla_{v} f \cdot \nabla_{x} \Phi=0
$$

- $f(\mathbf{x}, \mathbf{v})$ - stellar distribution function, positions \mathbf{x}, velocities \mathbf{v}, gravitational potential $\boldsymbol{\Phi}$
- Integrate over velocities, switch to cylindrical-polar co-ordinates, and get the Jeans Equation in z.

$$
\underbrace{\frac{1}{R \nu} \frac{\partial}{\partial R}\left(R \nu \sigma_{R z}\right)}_{\text {'tilt' term: } \mathcal{T}}+\underbrace{-\frac{d \Phi}{d z}}_{\begin{array}{c}
\text { 'axial' term: } \mathcal{A} \\
\frac{1}{R \nu} \frac{\partial}{\partial \phi}\left(\nu \sigma_{\phi z}\right)
\end{array}+\frac{1}{\nu} \frac{d}{d z}\left(\nu \sigma_{z}^{2}\right)=\underbrace{\Sigma_{z}(z)=\frac{\left|K_{z}\right|}{2 \pi G}}_{\begin{array}{c}
K_{z} \\
\text { Density }
\end{array}}}
$$

$$
\underbrace{\frac{1}{R \nu} \frac{\partial}{\partial R}\left(R \nu \sigma_{R z}\right)}_{\text {'till' term: } \mathcal{T}}+\underbrace{\frac{1}{R \nu} \frac{\partial}{\partial \phi}\left(\nu \sigma_{\phi z}\right)}_{\text {'axial' term: } \mathcal{A}}+\frac{1}{\nu} \frac{d}{d z}\left(\nu \sigma_{z}^{2}\right)=\underbrace{-\frac{d \Phi}{d z}}_{K_{z}}
$$

Integrate to avoid noise

$$
\sigma_{z}^{2}(z)=\frac{1}{\nu(z)} \int_{0}^{z} \nu\left(z^{\prime}\right)\left[K_{z}\left(z^{\prime}\right)-\mathcal{T}\left(z^{\prime}\right)-\mathcal{A}\left(\chi_{\substack{\prime})] d z^{\prime}+\frac{C}{\nu(z)}}^{\substack{ \\ \\0 \text { from axisymmetry }}}\right.\right.
$$

Construct model for

- tracer density V,
- Dark Matter + Baryon density $\rightarrow \mathrm{K}_{\mathrm{z}}$,
- tilt term T(z).

Calculate velocity dispersion $\sigma_{\mathbf{z}}$, then fit the model to velocity dispersion, tracer density \& tilt term to data. Use MultiNest to derive posterior distribution on DM.

Our Method - Modelling and MultiNest

- Construct models for the tracer density, baryon+DM mass, tilt term
- Calculate z velocity dispersion
- Fit tracer density and z-velocity dispersion to data with MultiNest

Modelling the Components:

Mass profile $-K_{z}$ term

- We assume constant DM density going up in z
- Simplified two-parameter baryon profile for mock data testing.
- Poisson Equation in Cylindrical Coordinates picks up a Rotation Curve term

$$
\nabla^{2} \Phi=\frac{\partial^{2} \Phi}{\partial z^{2}}+\underbrace{\frac{1}{R} \frac{\partial V_{c}^{2}(R)}{\partial R}}_{\text {'rotation curve' term: } \mathcal{R}}=4 \pi G \rho
$$

- Flat rotation curve makes rotation curve term disappear.
- Rotation curve term becomes a shift in the density.

$$
\frac{\partial^{2} \Phi}{\partial z^{2}}=4 \pi G \rho(z)_{\mathrm{eff}} \quad \rho(z)_{\mathrm{eff}}=\rho(z)-\frac{1}{4 \pi G R} \frac{\partial V_{c}^{2}(R)}{\partial R}
$$

- We assume a locally flat RC, but from Oort constants we can estimate the systematic uncertainty from this to be on the order of $0.1 \mathrm{GeV} / \mathrm{cm}^{3}$.

Modelling the Components:

Tilt Term

- Tilt term links vertical and radial motion of a set of stars.

$$
\mathcal{T}\left(R_{\odot}, z\right)=
$$

- Tilt becomes larger and thus more important at higher z.
- Require information about the radial variation of $\sigma_{R z}{ }^{2}$ which we currently do not have.
- Thus we assume it has the same dependence as the tracer density v
- for instance the traditional model is a falling exponential

$$
\begin{array}{cc}
\nu(R, z)=\left.\nu(z)\right|_{R_{\odot}} \exp \left(-\frac{R-R_{\odot}}{R_{0}}\right), & \mathrm{R}_{0}= \\
\Rightarrow \sigma_{R z}^{2}(R, z)=\left.\sigma_{R z}^{2}(z)\right|_{R_{\odot}} \exp \left(-\frac{R-R_{\odot}}{R_{1}}\right) & \left.\sigma_{R z}^{2}(z)\right|_{R}=\left.A\left(\frac{z}{\mathrm{kpc}}\right)^{n}\right|_{R} \\
\Rightarrow & \mathcal{T}\left(R_{\odot}, z\right)=\left.A\left(\frac{z}{\mathrm{kpc}}\right)^{n}\right|_{R_{\odot}}\left[\frac{1}{R_{\odot}}-\frac{2}{R_{0}}\right]
\end{array}
$$

Testing with 20 Simple Mock Data Sets

 The Importance of the Tilt Term

Tilt is the coupling between Radial and Vertical motions. Neglecting tilt leads to a systematic bias of the dark matter density.

Initial Tests with SDSS Data from Budenbender et al.

- Stellar kinematics data from SDSS G-dwarfs from Budenbender et al., MNRAS 452 (20I5) 956-968, arXiv:I407.4808.
- Observational baryon profile derived from McKee et al., ApJ 8 I4 (2015) I3, arXiv:I509.05334
- Modified Tilt model to allow for stellar populations which rise with radius

$$
\mathcal{T}\left(R_{\odot}, z\right)=\sigma_{R z}^{2}\left(R_{\odot}, z\right)\left[\frac{1}{R_{\odot}}-2 k\right]
$$

Alpha-young population ('thin disc')

TeVPA 2016, CERN.

Preliminary Results.

SDSS-SEGUE G-dwarf data from Budenbender et al. 2014 I407.4808v2. Tilt priors informed by data from SDSSAPOGEE, Bovy et al. I 509.05796.

Analyzed separately, 2σ uncertainties quoted.

I. $\rho_{\mathrm{DM}}=0.46^{+0.13}{ }_{-0.16} \mathrm{GeV} / \mathrm{cm}^{3}$ (tile: 0.48)
2. $\rho_{\mathrm{DM}}=0.73^{+0.13}{ }_{-0.13} \mathrm{GeV} / \mathrm{cm}^{3}$ (短: 0.42)

Alpha-old population ('thick disc')

$z \quad$ [kpc]

Alpha-young population ('thin disc')

TeVPA 2016, CERN.

Preliminary Results.

SDSS-SEGUE G-dwarf data from Budenbender et al. 2014 I 407.4808v2. Tilt priors informed by data from SDSSAPOGEE, Bovy et al. I 509.05796.

Combined Analysis, 2 σ uncertainties quoted.

$\rho_{\mathrm{DM}}=0.40^{+0.08}{ }_{-0.06} \mathrm{GeV} / \mathrm{cm}^{3}$

Alpha-old population ('thick disc')

SDSS Preliminary Results: Summary

Thin Disk only: $\rho_{D M}=0.46^{+0.13}{ }_{-0.16} \mathrm{GeV} / \mathrm{cm}^{3}(2 \sigma)(0.48$ w/out tilt $)$ Thick Disc only: $\rho_{D M}=0.73^{+0.13}{ }_{-0.13} \mathrm{GeV} / \mathrm{cm}^{3}(2 \sigma)(0.42$ w/out tilt $)$

Thin+Thick Disc: $\rho_{D M}=0.40^{+0.08}{ }_{-0.06} \mathrm{GeV} / \mathrm{cm}^{3}(2 \sigma)$

SDSS Preliminary Results: Summary

Thin Disk only: $\rho_{D M}=0.46^{+0.13}{ }_{-0.16} \mathrm{GeV} / \mathrm{cm}^{3}(2 \sigma)(0.48$ w/out tilt $)$ Thick Disc only: $\rho_{D M}=0.73^{+0.13}{ }_{-0.13} \mathrm{GeV} / \mathrm{cm}^{3}(2 \sigma)(0.42$ w/out tilt $)$

Thin+Thick Disc: $\rho_{D M}=0.40^{+0.08}{ }_{-0.06} \mathrm{GeV} / \mathrm{cm}^{3}(2 \sigma)$
I. Thin disk result less sensitive to tilt term than the thick disc

SDSS Preliminary Results: Summary

Thin Disk only: $\rho_{\mathrm{DM}}=0.46^{+0.13}{ }_{-0.16} \mathrm{GeV} / \mathrm{cm}^{3}(2 \sigma)(0.48$ w/out tilt $)$ Thick Disc only: $\rho_{D M}=0.73^{+0.13}{ }_{-0.13} \mathrm{GeV} / \mathrm{cm}^{3}(2 \sigma)(0.42$ w/out tilt $)$

Thin+Thick Disc: $\rho_{D M}=0.40^{+0.08}{ }_{-0.06} \mathrm{GeV} / \mathrm{cm}^{3}(2 \sigma)$
I. Thin disk result less sensitive to tilt term than the thick disc
2. Combining thick and thin data gives a result that is lower than either separate result - still under investigation.

SDSS Preliminary Results: Summary

Thin Disk only: $\rho_{\mathrm{DM}}=0.46^{+0.13}-0.16 \mathrm{GeV} / \mathrm{cm}^{3}(2 \sigma)(0.48$ w/out tilt $)$ Thick Disc only: $\rho_{\mathrm{DM}}=0.73^{+0.13}-0.13 \mathrm{GeV} / \mathrm{cm}^{3}(2 \sigma)(0.42$ w/out tilt)

Thin+Thick Disc: $\rho_{\mathrm{DM}}=0.40^{+0.08}{ }_{-0.06} \mathrm{GeV} / \mathrm{cm}^{3}(2 \sigma)$
I. Thin disk result less sensitive to tilt term than the thick disc
2. Combining thick and thin data gives a result that is lower than either separate result - still under investigation.
3. Statistical uncertainty is now less than the systematic uncertainty arising from the rotation curve term - this needs to be tackled.

SDSS Preliminary Results: Summary

Thin Disk only: $\rho_{\mathrm{DM}}=0.46^{+0.13}-0.16 \mathrm{GeV} / \mathrm{cm}^{3}(2 \sigma)(0.48$ w/out tilt $)$ Thick Disc only: $\rho_{\mathrm{DM}}=0.73^{+0.13}-0.13 \mathrm{GeV} / \mathrm{cm}^{3}(2 \sigma)(0.42$ w/out tilt) Thin+Thick Disc: $\rho_{\mathrm{DM}}=0.40^{+0.08}{ }_{-0.06} \mathrm{GeV} / \mathrm{cm}^{3}(2 \sigma)$
I. Thin disk result less sensitive to tilt term than the thick disc
2. Combining thick and thin data gives a result that is lower than either separate result - still under investigation.
3. Statistical uncertainty is now less than the systematic uncertainty arising from the rotation curve term - this needs to be tackled.
4. We assume the radial variation of $\sigma_{\mathrm{Rz}^{2}}{ }^{2}$ matches that of the tracer density - we need to measure the $\sigma_{\mathrm{Rz}^{2}}{ }^{2}$ radial variation...

Gaia Satellite, 2013-

- Astrometrics mission, successor to Hipparcos (1989-1993)
- I 0^{4} times more stars with factor 50-100 higher accuracy compared to Hipparcos.
- Full data set will include 5D data for \sim I billion stars
- sky positions (α, δ),
- parallaxes (ω),
- proper motions ($\mu_{\alpha}, \mu_{\delta}$)
- Radial velocities μ_{r} for ~ 150 million stars.

Data Release I was on Wednesday |4/9

- Observations taken between July 2014 and September 2015 - Sky positions (α, δ) and G-magnitude for $\sim 1 . \mid 4$ billion stars - TGAS solution for 2.05 million stars...

Tycho-Gaia Astrometric Solution (TGAS)

- Hipparcos astrometric satellite produced the Tycho catalogue of 2.5 million stars.
- TGAS combines sky position (α, δ) from Tycho with initial data from Gaia to produce 5D astrometric data.

Radial Measurements

- Ideally we need full 6D information.
- Both TGAS and final Gaia data release have a radial velocity deficit:
- TGAS: No radial data
- Full Gaia data release: radial data for only 150 m of Ib stars
- Near term:TGAS + RAVE radial data
- Long term: Gaia + WEAVE + 4MOST spectrographic surveys

UK Schmidt Telescope,
Australia

WEAVE, 2018-
William Herschel Telescope, La Palma

4MOST, 202IVISTA Telescope,
Paranal, Chile

Conclusions

- Tilt term is important - ignore at your peril!
- We still need more data on the tilt term - namely radial variation of $\mathrm{O}_{\mathrm{Rz}}{ }^{2}$.
- Preliminary analysis of thin disc and thin+thick disc Budenbender. SDSS data yield a local dark matter density inline with previous estimates, but analysis is ongoing.
- Statistical uncertainty is now less than the systematic uncertainty arising from the rotation curve term.

- Gaia Data Release I is out iow https://gea.esac.esa.int/archive/

Backup Slides

Tilt Term Redux

$\underbrace{\frac{1}{R \nu} \frac{\partial}{\partial R}\left(R \nu \sigma_{R z}^{2}\right)}_{\text {'tilt' term: } \mathcal{T}}$

- We assume $\sigma_{R z}{ }^{2}$ has the same radial dependence as the tracer density v
- Traditionally (e.g. Binney \& Tremaine) tracer density V is a exponential falling with radius, eg:

$$
\begin{array}{rlr}
\nu(R, z)= & \left.\nu(z)\right|_{R_{\odot}} \exp \left(-\frac{R-R_{\odot}}{R_{0}}\right), \quad \quad \mathrm{R}_{0}=\mathrm{R}_{\mathrm{I}} \\
\Rightarrow \sigma_{R z}^{2}(R, z)= & \left.\sigma_{R z}^{2}(z)\right|_{R_{\odot}} \exp \left(-\frac{R-R_{\odot}}{R_{1}}\right) \\
& \left.\sigma_{R z}^{2}(z)\right|_{R}=\left.A\left(\frac{z}{\mathrm{kpc}}\right)^{n}\right|_{R} &
\end{array}
$$

$$
\mathcal{T}\left(R_{\odot}, z\right)=\left.A\left(\frac{z}{\mathrm{kpc}}\right)^{n}\right|_{R_{\odot}}\left[\frac{1}{R_{\odot}}-\frac{2}{R_{0}}\right]
$$

Negative
Positive
Negative

SDSS/Budenbender:

Tilt Term Redux

- But recent SDSS results show a surface density rising with radius for some populations

Bovy et al., The stellar population structure of the Galactic $\quad R(\mathrm{kpc})$
disk, Astrophys.J.823:30, 2016, arXiv: I509.05796

- Thus we model the tilt term as the following, with a flat prior on k that ranges from negative to positive values.

Positive or Negative Positive Positive or Negative

