Sep 12 – 16, 2016
Europe/Zurich timezone
There is a live webcast for this event.

Status of NEWS: Nuclear Emulsions for WIMP Search

Sep 16, 2016, 2:30 PM
13/2-005 (CERN)



Show room on map
Oral Contributions Dark matter (direct detection) Dark matter (direct detection)


Giovanni Rosa (Universita e INFN, Roma I (IT))


NEWS collaboration submitted Letter of Intent to the Gran Sasso Scientific
Committee last year. Since a few years a lot of R&D is undertaken in emulsion and scanning technologies in the collaboration. We would like to report ongoing activities; reporting the update on our sensitivity including the direction information. Please consider abstract below for oral presentation in the TeV particle Astrophysics.


Nowadays there is compelling evidence for the existence of dark matter in the Universe. A general consensus has been expressed on the need for a directional sensitive detector to confirm, with a complementary approach, the candidates found in “conventional” searches and to finally extend their sensitivity beyond the limit of neutrino-induced background. We propose here the use of a detector based on nuclear emulsions to measure the direction of WIMP-induced nuclear recoils. The production of nuclear emulsion films with nanometric grains has been recently established. Several measurement campaigns have demonstrated the capability of detecting sub-micrometric tracks left by low energy ions in such emulsion films with nanometric grains. Innovative analysis technologies with fully automated optical microscopes have made it possible to achieve the track reconstruction for path lengths down to one hundred nanometres and there are good prospects to further exceed this limit. The detector concept we propose foresees the use of a bulk of nuclear emulsion films surrounded by a shield from environmental radioactivity, to be placed on an equatorial telescope in order to cancel out the effect of the Earth rotation, thus keeping the detector at a fixed orientation toward the expected direction of galactic WIMPs. We report the performances and the schedule of the NEWS experiment, with its one-kilogram mass pilot experiment, aiming at delivering the first results on the time scale of five years.

Presentation materials