

Status of LZ Experiment

Sridhara Dasu University of Wisconsin For the LZ Collaboration

Thanks to Jim Dobson (Imperial) & Kim Palladino (Wisconsin)

The LZ collaboration

LIP Coimbra (Portugal) Center for Underground Physics (Korea) MEPhI (Russia) Edinburgh University (UK) University of Liverpool (UK) Imperial College London (UK) University College London (UK) University of Oxford (UK) STFC Rutherford Appleton Laboratories (UK) University of Sheffield (UK) University of Alabama University at Albany SUNY Berkeley Lab (LBNL) University of California, Berkeley Brookhaven National Laboratory **Brown University** University of California, Davis Fermi National Accelerator Laboratory Lawrence Livermore National Laboratory University of Maryland University of Michigan Northwestern University University of Rochester University of California, Santa Barbara University of South Dakota South Dakota School of Mines & Technology South Dakota Science and Technology Authority SLAC National Accelerator Laboratory Texas A&M Washington University University of Wisconsin

16-Sep-2016

LZ = LUX + ZEPLIN

ZEPLIN pioneered WIMP-search with 2-phase Xe 3.9 ×10³ pb/n

Current world leader: ~6×10⁻¹⁰ pb/n and counting

100 kg

Scale-up 40X

demonstrated technology

and experience

Low-risk

but aggressive program Key: Maintain low backgrounds and low energy thresholds

Total Mass:10 TWIMP Active Mass:7 TWIMP Fiducial Mass:5.6 T

5600 kg

Sanford Underground Research Facility (SURF) South Dakota, USA

LXe-TPC: principle of operation Marc Schuman Plenary for Details

High purity liquid xenon target Single-photon & electron sensitivity

Ratio S1(light) + S2(charge) → Electron Recoil (ER) to Nuclear Recoil (NR) discrimination

Delta-t between S1/S2 and S2light pattern give 3D position → fiducialization and multiscatter rejection

Key challenges: large mass, low-background, low-threshold

Example: 1.5 keV electron in LUX

5-fold coincidence S1 + much larger S2 20 μ s later

Xenon TPC and Skin

- 7-tonne active region (cathode \rightarrow gate), 5.6 tonne FV
- 253 top + 241 bottom 3" φ PMTs (activity ~mBq; high QE)
- TPC lined with high-reflectivity PTFE ($R_{PTFE} \ge 95\%$)*
- Instrumented "Skin" region optically separated from TPC

Key performance drivers

	Requirement / Baseline	Goal
Cathode HV	50 kV	100 kV
Light collection	7.5%	12%
e ⁻ lifetime (µs)	850	2800
N-fold trigger coincidence	3	2
²²² Rn	20 mBq	1 mBq

5.8 keVnr S1 threshold (4.5 keVnr LUX)0.7 kV/cm drift field, 99.5% ER/NR disc. (already surpassed in LUX at 0.2 kV/cm)

The Outer Detector (OD)

Essential to maximize fiducial volume Hermetic measurement of penetrating backgrounds 60 cm thick, 17.5 tonnes Gadolinium-loaded scintillator, LAB*, OK underground 97% efficient for neutrons Daya Bay legacy, scintillator & tanks (and people)

Layout of the LZ outer detector system, which consists of nine acrylic tanks. The largest are the four quarter-tanks on the sides. Two tanks cover the top, and three the bottom. The exploded view on the right shows the displacer cylinders placed between the acrylic vessels and the cryostat.

* Linear alkylbenzene

Powerful background rejection

Simulated single NR scatter in TPC before/after Skin+OD vetoes

LZ, ROI: 0-20 phd S1c (single)

LZ, ROI: 0-20 phd S1c (with vetoes)

- Increases effective fiducial mass from $3.8 \rightarrow 5.6$ tonnes
- Internal backgrounds now dominate

Dasu - LZ, TevPA

Comprehensive suite of calibrations

Comprehensive suite of tools for calibration of response to neutrons and electrons/photons:
Dispersed in Xe to map out response
Movable photon sources e.g. tubes penetrating cryostat
Multiple neutron sources, including external neutron generator (upgraded version used in LUX)

Build on LUX (and other experience) + test some new concepts with LUX after completion of physics running, summer this year.

Detector prototyping

Extensive R&D + Prototypes

- Liquid argon at LBNL
- Few kg LXe chambers at several labs & univs

System test platform at SLAC

- Phase-I ~120 kg of LXe
 - Full fledged setup with cooling, cleaning, ...
- TPC testing ongoing
 - Strong drift field to maximize S2/S1 discrimination of background electronic recoils
 - High Voltage: 50kV demonstrated goal 100 kV
- Phase-2 ~500 kg of LXe
 - Full scale LZ HV grids

SLAC System Test Results

Event rates for >4 photons (red) and >300 photons (green) during the system test run 2, with the cathode biased to 50 kV (blue).

Control of backgrounds

Extensive LZ materials screening campaign with many dedicated screening facilities (Gamma screeners, Rn-emanation, Mass spec)

- Assay and assess impact of all candidate detector components prior to adoption
- Work closely with suppliers and manufacturers
- All major components and materials identified
- After application of vetoes internal backgrounds now dominate over those from intrinsic contamination of detector components: particularly Kr, Rn and neutrinoinduced

Control of internal backgrounds

Rn (and Kr) dominant internal background sources

Rn:

- Emanates from most materials
- 20 mBq requirement, 1 mBq goal
- Four systems with ~0.1 mBq sensitivity
- Main assembly laboratory at SURF will have reduced radon air system
- Kr:
- Remove Kr to <15 ppq (10-15 g/g) using gas chromatography (best LUX batch 200 ppq)
- Setting up to process 200 kg/day at SLAC

Neutrino backgrounds

arXiv:1307:5458

Expected backgrounds

1000 live-days, 5600 kg fiducial

ltem	Mass (kg)	U (mBq/ kg)	Th (mBq/ kg)	Co-60 (mBq/kg)	K-40 (mBq/kg)	n/yr	ER (cts)	NR (cts)
R11410 PMTs	90.8	71.6	3.2	2.8	15.4	80.8	1.84	0.012
R11410 bases	2.6	546	31.7	2.3	82.6	44.3	0.37	0.004
Cryostat								
Vessels	2406	1.6	0.3	0.1	0.6	123.7	0.55	0.011
OD PMTs	122.4	400	200	0	300	3308	0.00	0.000
Other components					7.16	0.045		
Total components					9.92	0.072		
Dispersed radionuclides (Rn, Kr, Ar)					870			
Laboratory and cosmogenics					33	0.12		
Surface contamination					0.2	0.37		
Xe-136 2vßß					67			
Neutrinos (v-e, v-A)					255	0.72		
Total events					1230	1.28		
WIMP backgr events (99.5% ER discrimination, 50% NR acceptance) 6.17 0.6					0.64			
Total ER+NR background events					6.	81		

Simulations

Powerful GEANT4-based simulation with realistic detector geometry

LZ tune of Noble Element Scintillation Technique (NEST) package used for S1/S2 generation, tuned to World + LUX DD and CH3T

Profile Likelihood Ratio for hypothesis testing: uses PDFs in S1,S2,r,z space

Figure 12.1.1: Engineering drawing and simulation geometry of the outer cryostat. SRDf:CryostatComp

Baseline vs goal

Baseline performance requirements:

These have to be achieved to meet top level sensitivity requirement of 3×10^{-48} cm2 @ 40 GeV/c2 Fully expect these to be met **Goals:** what we're aiming for

Detector Parameter	Baseline	Goal
Light collection (PDE)	0.075	0.12
Drift field (V/cm)	310	650
Electron lifetime (µs)	850	2800
PMT phe detection	0.9	1.0
N-fold trigger coincidence	3	2
²²² Rn (mBq in active region)	13.4	0.67
Live days	1000	1000

Sensitivity – Spin Independent

Other physics

Effective Field Theory Interaction Decomposition Neutrinoless Double Beta Decay

- Enriched Xe addition, Electronics with dynamic range
- Axions/Axion-like-particles, leptophilic DM, fractionally charged particles
- **External Neutrino Physics**
 - Solar
 - Supernova

LZ Timeline

Year	Month	Activity
2012	March	LZ (LUX-ZEPLIN) collaboration formed
	September	DOE CD-0 for G2 dark matter experiments
2013	November	LZ R&D report submitted
2014	July	LZ Project selected in US and UK
2015	April	DOE CD-1/3a approval, similar in UK
		Begin long-lead procurements(Xe, PMT, cryostat)
2016	August	DOE CD-2/3b approval
	December	DOE CD-3c IPR
2017	March	LUX removed from underground
	August	Beneficial occupancy surface assembly building
2018	June	Beneficial occupancy for underground installation
2019		Underground installation
2020	April	Early finish CD-4. Start operations
2025+		Planning on 5+ years of operations

Conclusions

Project well underway, with procurement of Xe, PMTs and cryostat vessels started and extensive prototype program underway

- LZ benefits from excellent LUX calibration techniques and understanding of backgrounds
- Will explore significant fraction of available phase space:
 - WIMP sensitivity 1.3 × 10⁻⁴⁸ cm² @ 40 GeV/c2 and approaching neutrino floor
- + non-WIMP physics reach

Sensitivity : Spin Dependent

Spin Independent : 3σ **Discovery**

