ORPHAN GAMMA-RAY FLARES FROM
RELATIVISTIC BLOBS COMPTONIZING RADIATION OF LUMINOUS STARS IN JETS OF AGNs

W. Bednarek, P. Banasiński, J. Sitarek
Department of Astrophysics, University of Lodz, Poland

(MNRAS, 2016, 463, L26)
Stellar clusters around SMBHs in AGNs

The example of nearby radio galaxy: Centaurs A

- Galactic Bulge: stars in the jet $\sim 8 \times 10^8$ (Wykes et al. 2014), if 10^{-3} of them Red Giants $\approx 10^6$ Red Giants within the jet.

- Nuclear stellar cluster: $(6 - 12) \times 10^7 \, M_\odot$ in young stars (Wykes et al. 2014), ~ 100 massive (O and WR type) stars within the jet.

- Globular clusters:
 ~ 1550 GC around Cen A (Gültekin et al. 2009),
 ~ 13000 GC around M87 (McLaughlin et al. 1994),

 ↓

 a few to several GCs within a jet
Collision scenario: a star (stellar cluster) within the jet
Collisions of compact objects with the jet plasma in AGNs

High energy radiation models

- Collision of jet plasma with massive star wind (scenario I)
 e.g. Bednarek & Protheroe (1997), Araudo et al. (2013), Bosch-Ramon (2015), de la Cita et al. (2016), ...

- Collision of jet plasma directly with stellar surface - disruption of star (scenario II)
 e.g. Barkov et al. (2010), Bosch-Ramon et al. (2012), ...

- Collisions of jet plasma with clouds of matter (and also globular clusters, supernova remnants, ... ?)
 e.g. Dar & Laor (1997), Beall & Bednarek (1999), Torres & Reimer (2011), Bednarek & Banasiński (2015, GC), ...

- Interaction of relativistic blob of particles in the jet with stellar radiation (scenario III)
 (Banasiński, Bednarek, Sitarek 2016)
Collision of jet plasma with massive star wind
Shock localization - different scenarios

- **Distance of the shock from stellar surface** (Bednarek & Protheroe 1997):

\[
R_{\text{sh}}^* \approx 6 \times 10^{12} (M_{-5}v_3)^{1/2} \theta_{-1} l_{-1} / L_{46}^{1/2} \text{ cm},
\]

where \(\dot{M} = 10^{-5} M_5 M_\odot\) and \(v = 10^3 v_3 \text{ km s}^{-1}\) are the mass loss rate and the velocity of the stellar wind, and \(L_b = 10^{46} L_{46} \text{ erg s}^{-1}\) is the power of the blob in the observer’s frame, \(\theta = 0.1 \theta_{-1} \text{ rad}\) is the jet opening angle, and \(l = 0.1 l_{-1} \text{ pc}\) is the distance of the star from the base of the jet.

- **If** \(R_{\text{sh}} >> R_*\): Shock around star accelerates particles (I)
 (strong stellar winds)

- **If** \(R_{\text{sh}} < R_*\): Jet collides with the stellar surface (II)
 (powerful jets, close to the jet base)

- **If** \(R_{\text{sh}} << R_*\): Jet particles interact with stellar radiation (III)
 (moderate winds, everywhere in the jet)
A star colliding with the blob in jet of AGN (Banasiński et al. 2016):

- Relativistic electrons in the blob, moving with the Lorentz factor γ_b, suffer strong energy losses on comptonization of radiation coming from a single star.
- Electrons are injected isotropically into the blob with a power law spectrum to TeV energies.
- Electrons scatter stellar radiation to γ-rays.
- γ-ray photons initiate IC e^\pm pair cascade.
- γ-ray spectrum from IC e^\pm pair cascade is calculated.
Optical depths for gamma-rays and electrons in stellar radiation

Figure 1: Optical depth for the inverse Compton scattering of the stellar radiation (O type star: $T = 3 \times 10^4$ K, $R = 10^{12}$ cm) by electrons in the blob (on the left) and for absorption of produced γ-rays in this stellar radiation (on the right) as the function of the energy (measured in the reference frame of the blob with $\gamma_b = 10$ for the electrons and in the reference frame of the star for the γ-rays). The impact distance, d, is equal to $1.1 R_\star$ (red, solid lines), $10 R_\star$ (green dotted) and $100 R_\star$ (black dashed).
Gamma-ray spectra from star-blob encounter (specific impacts)

Figure 2: SED of the γ-ray spectrum for a power law differential spectrum of electrons with an spectral index of α between 0.1 GeV and E'_{\max} for fixed impact distance of electrons. Top left panel: dependence on impact distance d, thick lines show the spectra from the full cascade, thin lines the spectra escaping from the first generation of photons. Top right panel: dependence on the Lorentz factor of the blob γ_b. Bottom left panel: dependence on the spectral index of electrons α. Bottom right panel: dependence on the maximum energy of the electrons (measured in the blob’s frame): E'_{\max}. Unless specified otherwise $\gamma_b = 10$, $d = 10 R_\star$, $\alpha = 2$, $E'_{\max} = 1$ TeV. The spectra are normalised to 1 erg of injected electron energy in the blob’s frame of reference.
Gamma-ray spectra from star-blob encounter (the whole blob)

Figure 3: SED from a cylindrical blob filled homogeneously with electrons with a power law energy distribution between 0.1 and 1000 GeV and a spectral index of 2. The total energy in the electron spectrum is normalised to 1 erg per $\pi (10^{14} \text{ cm})^2$ cross section of the blob. The blob is moving with $\gamma_b = 10$. Left figure: γ-ray spectra for different radii of the blob: $3 \times 10^{13} \text{ cm}$ (red, solid), 10^{14} cm (blue, dashed), $3 \times 10^{14} \text{ cm}$ (black, dotted). Right figure: spectra emitted within the solid angle observed at different range of observation angles $0^\circ - 3^\circ$ (red solid), $3^\circ - 6^\circ$ (blue dashed), $6^\circ - 9^\circ$ (black dotted), $9^\circ - 12^\circ$ (green dot-dashed). The radius of the blob is equal to 10^{14} cm.
The extreme gamma-ray blazar PKS 1222+21

- FSRQ PKS 1222+21 at $z = 0.432$;
- Relativistic jet with superluminal motion ($\beta_{\text{app}} > 10$) (Hooimeyer et al. 1992);
- Detected by Fermi-LAT with the flat spectrum (-2) below a few GeV (Tanaka et al. 2011, Ackermann et al. 2014);
- Short flare, with rapid variability (~ 10 min), between 70-400 GeV (index -3.75), observed by MAGIC (Aleksić et al. 2011);
- Isotropic GeV power: $L_{\gamma} \approx 7 \times 10^{47}$ erg s$^{-1}$;
- Black hole mass: $(6 - 8) \times 10^8$ M$_\odot$ (Farina et al. 2012);
- Low energy emission does not change significantly during γ-ray flare (Ackermann et al. 2014):

Orphan γ-ray flare?

As an example, we interpret PKS 1222+21 in terms of our model:
Figure 4: Interpretation of the γ-ray emission (SED) observed during the flare from the FSRQ PKS 1222+21 in June 2010 by Fermi-LAT (empty squares) and MAGIC (full circles). A blob has the radius $d = 3 \times 10^{14}$ cm and a Gaussian longitudinal spread with a standard deviation of $H_b = 1.3 \times 10^{13}$ cm (the reference frame of the observer), and moves with $\gamma_b = 100$ encountering the O type star ($T_\star = 3 \times 10^4$ K and $R_\star = 10^{12}$ cm). The electrons are injected with a power law spectrum (index -2.5 between 10 MeV and 10 GeV, total energy density of $\rho_E = 24$ erg cm$^{-3}$ (in the blob’s frame of reference). The γ-ray emission is averaged over the observation angle $0 - 1/\gamma_b$ rad. The absorption in the Extragalactic Background Light is taken into account according to Dominguez et al. (2011) model.
Interpretation of the extreme blazar PKS 1222+21: light curve

Figure 5: Interpretation of the γ-ray light curve during the flare above 100 GeV from PKS 1222+21 observed by MAGIC (Aleksić et al. 2011). The dashed vertical lines are the time range from which the SED is computed.
Discussion

• We test our model applicability to extreme FSRQ (PKS 1222+21):

• In order to fit the observations we require the following parameters:

 Cylindrical blob with radius $R_b = 3 \times 10^{14}$ cm,

 Longitudinal distribution of electrons with height $H_b = 1.3 \times 10^{13}$ cm,

 The blob moves with the Lorentz factor $\gamma_b = 100$,

 Relativistic electron energy density $\rho_b = 20$ erg cm$^{-3}$.

• The power of the blob in the observer’s frame:

 $$L_\gamma = \pi R_b^2 c \rho_b \gamma_b^2 \approx 1.7 \times 10^{45} \text{ erg s}^{-1};$$

• Eddington luminosity of the SMBH in PKS 1222+21 is:

 $$L_{\text{Edd}} = (8 - 10) \times 10^{46} \text{ erg s}^{-1};$$

• $\sim 2\% \ L_{\text{Edd}} \text{ in the blob seems not excluded in the inner jet.}$