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~ The life of cosmic ra

Cosmlc rays are hlgh energetic partches
produced outside the solar system
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Ingredients for secondary e+ spectra determination

Secondary positrons are created by the interaction of primary cosmic rays
with the interstellar medium composed of hydrogen and helium.
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To obtain the secondary positron flux prediction we have to take into account:

l\ Spectra of primary cosmic rays
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Interaction cross section CR+ISM

Description of the galactic environment

Solar modulation
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Two-zone model and semi-analytic method
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 The source term for proton-hydrogen collisions is given by:

OQ™E, %) = dnny f(r,2) f dEpZ_Z(EP — E) Q,(Ep, X),
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The uncertainty on the primary CR flux implies an uncertainty on the secondary positron flux

d
QE,X) = dnny f(r,2) f dE,,é(E,, — E)D,(E,, %),

* We could simply use the uncertainties of various parameters derived by
the fit to our model, however this strategy has several weak points:

* the correlation between parameters is not taken into account

- the statistical and systematic uncertainties cannot be treated in the
same way: while statistical uncertainties are uncorrelated between
different data points and follow a normal distribution, the systematic
one can be correlated and follow a non-normal distribution.

The Monte Carlo method we developed takes into account both aspects.
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For each AI\/IS 02 and CREAI\/I p He flux data pomt a new, random value IS randomly
generated according to the following strategy:

To take Into account the statistical error: §

‘We assume that the systematic uncertainties are |
‘totally correlated, and we generate a random|
value following a uniform function (rectangular]
JeRELCHIpiteRetelelelPIpIRigCRVEIEIMETRETIOI® | function), centered on the primary flux and whose |
width is equal to twice the systematic uncertainty. |
Two random values are generated, independently |
for the AMS-02 and CREAM data, since they are |
Linc:orrelated. »

Each randomised primary flux is fit to our model, so that we get a pdf for each individual

parameter of the fit.
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The uncertainty caused by the experimental error on the primary fluxes has

no great impact on studies of secondary positrons.
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Ingredients for secondary e+ spectra determination

To obtain the secondary positron flux prediction we have to take into account:

Ml Propagation processes

Interaction cross section CR+ISM
Description of the galactic environment

Solar modulation

Spectra of primary cosmic rays
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/ posItrons | roaatlon

+ The transport equation (steady state) reads:

If we want to take all energy losses into account, it is hard to solve the
propagation equation when energy losses do not take place in the same region.
To solve this issue, we developed a method that allows us to consider the halo
energy losses to take place in an effective way in the galactic disk.

CosaSRRGRSS
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Besides energy losses, other relevant processes are convection, diffusion and
diffusive reacceleration, all taking place in the halo.

* We want the
the galactic d

processes taking place in the halo to take place in an effective way in
isk.

- We want to reproduce this effect assuming that the positron lose energy only in
the galactic disc.

 To do this, we need to boost the intensity of the energy losses processes occurring

only in the di

* The way to ¢
ensure that t
in the halo. T
defined by

M. Vecchi et a

sc in order to obtain the same effect on the positron.

o that is to replace in equation b(E) by the function bes(E,Es) that
ne solution of the transport equation is the same both in the disk and

|, TeVPA 2016

he key factor in order to determine bes(E,Es) is the function &(E, Es)
beilE Es) = €(E-Es)BtE)
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Det(E,Es) = &(E, Es)b(E)
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Propagation effects and typical times

Thanks to the pmchlng method all energy losses processes are considered to be effective
in the galactic disc.

We are therefore able to solve analytically the full transport equation taking into account all
the effects positrons undergo when they propagate in the Galaxy.
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Ingredients for secondary e+ spectra determination

To obtain the secondary positron flux prediction we have to take into account:

4; Description of the galactic environment

Interaction cross section CR+ISM

Spectra of primary cosmic rays

Solar modulation
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+ Same approach asin J. Lavalle et al, 2014. If the flux of secondary positrons is
larger than the flux measured by AMS-02, the propagation models used to derive it are
necessarily wrong.

+ The low energy part of the spectrum is affected by solar modulation: to be conservative,
applying the maximal effect of solar modulation™, and we test 1623 sets of propagation
parameters (allowed by B/C). Large halo size and small diffusion coefficients are allowed.
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AMS-02 data are incompatible with pure secondary hypothesis.
We need a primary positron source nearby the solar system.
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M. Vecchi et al TeVPA 2016

Secondary positrons are created by the interaction of primary cosmic rays with the
interstellar medium composed of hydrogen and helium.

A new method is developed to assess the effect of the primary CR experimental
uncertainties on the secondary positron flux, taking into account both statistical
and systematic errors. It is found to be below 1% up to 100 GeV, 7%@ 00 GeV).
CR transport equation has been solved in a semi-analytic way over the whole
energy range covered by AMS-02, providing a complete secondary positron flux
prediction between 0.5 GeV and 500 GeV.

The propagation models are constrained in a conservative way, scanning over a
wide range of solar modulation parameters: large halo size and small diffusion
coefficient are favoured.

AMS-02 positron data are incompatible with pure secondary hypothesis: we need a
primary positron source nearby the solar system to reproduce the measured flux.
The results presented today are preliminary, final tests are ongoing.

Thank you for your attention!
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