Spherical Cows
 of Dark Matter
 Lina Necib
 MIT

In collaboration with Nicolas Bernal and Tracy Slatyer Based on arXiv:1606.00433

Dark Matter

 Halo
Galaxy and Visible

 Matter
Indirect detection

Indirect detection
 SM
 DM

We always say that it is spherical.
But, from N-body simulations:

Galactic signals Extragalactic signals

Illustris

- Publically availáble

hydrodynamic simulation: It includes stars, gas, DM, and black holes.
-We use ~ 160000 halos ranging in mass.
$5 \times 10 . M_{\odot}-3 \times 10^{14} M_{\odot}$

- Ve find 650 Milky-Way like halos!

For more details on the simulation, check back-up slides.

Outline

Galactic Analysis

- Milky Way-like halos Morphology
- Comparison with GeV Excess

Extragalactic Analysis

- Expected Morphology
- Effect of Mergers
- Comparison with Xray cluster data

Galactic Analysis

Galactic Analysis

Perspective projection (P)

Create maps of 1.610^{5} halos for DM+baryons
Situate observer at 8.5 kpc from the center.

Existing Metrics

Generally axis ratios can be obtained by the eigenvalues of the moment of inertia tensor:

$$
\mathcal{I}_{i, j}=\sum_{n} x_{n, i} x_{n, j}
$$

This does not:

1. Distinguish decay signals from annihilation
2. Give importance to high signal regions. A far away weak signal can mess up the estimate.

Existing Metrics

Generally axis ratios can be obtained by the eigenvalues of the moment of inertia tensor:

$$
\mathcal{I}_{i, j}=\sum_{n} x_{n, i} x_{n, j}
$$

This does not:

1. Distinguish decay signals from annihilation
2. Give importance to high signal regions. A far away weak signal can mess up the estimate.

Modeling the DM halos as triaxial ellispoids:
This gets the extragalactic estimates very wrong!

Existing Metrics

Generally axis ratios can be obtained by the eigenvalues of the moment of inertia tensor:

$$
\mathcal{I}_{i, j}=\sum_{n} x_{n, i} x_{n, j}
$$

This does not:

1. Distinguish decay signals from annihilation
2. Give importance to high signal regions. A far away weak signal can mess up the estimate.

Modeling the DM halos as triaxial ellispoids:
This gets the extragalactic estimates very wrong!

In template methods, use different templates with different axis ratios and minimize the test statistics.
This is computationally challenging!

Building a new metric

$$
\mathcal{I}_{i, j}=\sum_{n} x_{n, i} x_{n, j} \text { Hom inout antiric }
$$

Building a new metric

$$
\mathcal{I}_{i, j}=\sum_{n} x_{n, i} x_{n, j}
$$ that is specialized for DM?

New Moment of Inertia Tensor:

Weighing by brightness in Dark Matter; Brightest spots: Highest J-factor

This is important because it can be used for indirect detection methods.

Galactic Analysis

$\begin{aligned} & \underline{\text { New Moment of }} \\ & \underline{\text { Inertia Tensor: }}\end{aligned} \mathcal{J}_{i, j}=\sum_{n} J\left(z_{n, i} z_{n, j}\right) z_{n, i} z_{n, j}$

$$
\begin{gathered}
J_{\text {decay }}=\int_{\text {l.o.s }} \rho d s d \Omega \\
J_{\text {annihilation }}=\int_{\text {l.o.s }} \rho^{2} d s d \Omega
\end{gathered}
$$

Galactic Analysis

$\frac{\text { New Moment of }}{\underline{\text { Inertia Tensor: }}} \quad \mathcal{J}_{i, j}=\sum_{n} J\left(z_{n, i} z_{n, j}\right) z_{n, i} z_{n, j}$
$J_{\text {decay }}=\int_{\text {l.o.s }} \rho d s d \Omega$
$J_{\text {annihilation }}=\int_{\text {l.o.s }} \rho^{2} d s d \Omega$

Find the MW-like halos:

- Stellar Mass requirement $4.5 \times 10^{10} M_{\odot}<M_{S}<8.3 \times 10^{10} M_{\odot}$
- Total Mass requirement $5 \times 10^{11} M_{\odot}<M_{200}<2.5 \times 10^{12} M_{\odot}$

650 Milky-Way like halos.

650 halos pass the MWlike cut.

We rotate them in 12 directions to increase statistics.

MW-like halos are mostly symmetric.

Annihilation enhances features by being proportional the square of the DM density, and thus

Extragalactic indirect detection signals are largely non-spherical!

Mergers

We selected the halos in which the second subhalo is less than 10% (1\%) of the total mass.

Mergers

We selected the halos in which the second subhalo is less than 10% (1\%) of the total mass.

X-ray cluster data

Bulbul et al., 1402.2301
Bulbul et al., 1605.02034
Hitomi Collaboration, 1607.07420

X-ray cluster data

Bulbul et al., 1402.2301
Bulbul et al., 1605.02034
Hitomi Collaboration, 1607.07420

X-ray cluster data

Cluster data more
symmetric than simulations

Bulbul et al., 1402.2301
Bulbul et al., 1605.02034
Hitomi Collaboration, 1607.07420

Conclusions

Galactic Analysis

- Milky Way-like halos Morphology.
- Comparison with GeV Excess.
- Constructed a method that is easily implemented for indirect detection signals.
- Galactic signals are expected to be symmetric.
- Extragalactic signals are expected to be less symmetric!
- We compared these against the morphology of X-ray cluster data as well as the signal and background of the Galactic gamma rays.

Backup Slides

Illustris

- Simulation traces the evolution of dark matter and baryons from $\mathrm{z}=127$ to $\mathrm{z}=0$.
- Volume $=(106.5 \mathrm{Mpc})^{3}$
- Particle masses:
- $m_{\mathrm{DM}}=6.3 \times 10^{6} M_{\odot}$
${ }^{\circ} m_{\mathrm{b}}=1.3 \times 10^{6} M_{\odot}$
- Softening length
- $\epsilon_{\mathrm{DM}}=1.4 \mathrm{kpc}$
${ }^{\circ} \epsilon_{\mathrm{b}}=0.7 \mathrm{kpc}$
- AGN feedback/ Supernova feedback
- Number of particles 1.8×10^{10}

Vogelsberger et al. 1305.2913, 1405.1418, 1405.2921
Torrey et al. 1305.4931
Genel et al. 1405.3749

- Lina Necib, MIT, TeVPA 2016

Expected Signal

Axis Correlation

We compare the contribution from different quadrants.

$$
\begin{aligned}
& R_{\mathrm{adj}}=\frac{\left(J_{1}+J_{2}\right)-\left(J_{3}+J_{4}\right)}{J_{1}+J_{2}+J_{3}+J_{4}} \\
& R_{\mathrm{opp}}=\frac{\left(J_{1}+J_{3}\right)-\left(J_{2}+J_{4}\right)}{J_{1}+J_{2}+J_{3}+J_{4}}
\end{aligned}
$$

We then also look at the inner 5 degrees.

Alternate way of

understanding morphology

