Formation models for antideuterons from dark matter

Are Raklev

Why search for antideuterons?

- Antideuterons (\bar{d}) from dark matter annihilation/decay have extremely low standard astrophysics backgrounds at low energies. [Donato, Fornengo and Salati, Phys. Rev. D62 (2000) 043003]
 - Not a primary cosmic ray.
 - Standard model production from spallation (pH-collisions).
 - In galactic rest frame the kinematic threshold is $\sim16m_p$. (baryon number conservation)
Why search for antideuterons?

- Antideuterons (\bar{d}) from dark matter annihilation/decay have extremely low standard astrophysics backgrounds at low energies.

 - Not a primary cosmic ray.

 - Standard model production from spallation (pH-collisions).

 - In galactic rest frame the kinematic threshold is $\sim 16m_p$.
 (baryon number conservation)

- Experimental interest: AMS-02 and GAPS (planned 2020).
Why search for antideuterons?

- Antideuterons (\(\bar{d}\)) from dark matter annihilation/decay have extremely low standard astrophysics backgrounds at low energies.

 - Not a primary cosmic ray.

 - Standard model production from spallation (pH-collisions).

 - In galactic rest frame the kinematic threshold is \(~16m_p\).
 (baryon number number conservation)

- Experimental interest: AMS-02 and GAPS (planned 2020).

- Are antideuterons any better than antiprotons? Depends…

 [Ibarra and Wild, JCAP 1302 (2013) 021]

 [see also Johannes Herms’ talk today]
Main uncertainties on \bar{d} spectrum (at Earth)
Main uncertainties on \bar{d} spectrum (at Earth)

- Propagation model.

[see Johannes Herms’ talk today]
Main uncertainties on \bar{d} spectrum (at Earth)

- Propagation model.

 - Monte Carlo generators are used to handle \bar{p} & \bar{n} production.
 (Correlation between \bar{p} & \bar{n} dependent on hadronization model.)

- \bar{d} formation is nuclear physics.

- Usually (simple) **coalescence models**

 [Schwarzschild and Zupancic, Phys. Rev. 129 (1963) 854–862]
Main uncertainties on \bar{d} spectrum (at Earth)

- Propagation model.

- Formation model.
 - Monte Carlo generators are used to handle \bar{p} & \bar{n} production.
 (Correlation between \bar{p} & \bar{n} dependent on hadronization model.)

 - \bar{d} formation is nuclear physics.

 - Usually (simple) **coalescence models**
 [Schwarzschild and Zupancic, Phys. Rev. 129 (1963) 854–862]
 - Nucleons with relative momentum k less than p_0 coalesce.

 $$ P(\bar{p}\bar{n} \to \bar{d}X|k) = \theta(p_0 - k) $$

[see Johannes Herms’ talk today]
Main uncertainties on \bar{d} spectrum (at Earth)

- Propagation model.

- Formation model.
 - Monte Carlo generators are used to handle \bar{p} & \bar{n} production. (Correlation between \bar{p} & \bar{n} dependent on hadronization model.)
 - \bar{d} formation is nuclear physics.
 - Usually (simple) coalescence models
 - Nucleons with relative momentum k less than p_0 coalesce. $P(\bar{p}\bar{n} \to \bar{d}X|k) = \theta(p_0 - k)$
 - p_0 can in principle be calibrated against data (~100 MeV).

[see Johannes Herms’ talk today]

[Schwarzschild and Zupancic, Phys. Rev. 129 (1963) 854–862]
Main uncertainties on \bar{d} spectrum (at Earth)

- Propagation model. [see Johannes Herms’ talk today]
- Formation model.
 - Monte Carlo generators are used to handle \bar{p} & \bar{n} production. (Correlation between \bar{p} & \bar{n} dependent on hadronization model.)
 - \bar{d} formation is nuclear physics.
 - Usually (simple) **coalescence models** [Schwarzschild and Zupancic, Phys. Rev. 129 (1963) 854–862]
 - Nucleons with relative momentum k less than p_0 coalesce.
 \[
P(\bar{p}\bar{n} \rightarrow \bar{d}X | k) = \theta(p_0 - k)
 \]
 - p_0 can in principle be calibrated against data (~100 MeV).
 - \bar{p} & \bar{n} need to be produced at the same space-time location. [Ibarra and Wild, JCAP 1302 (2013) 021]
Coalescence

- State-of-the-art is **event by event coalesence** on MC data for \bar{p} & \bar{n} spectra with a choice of p_0. (As opposed to **statistical coalesence**.)

 - Very CPU expensive.

 - p_0 often tuned on **one** data point (ALEPH).

 \[
 \text{BR}(Z \to \bar{d}X) = (5.9 \pm 1.8 \pm 0.5) \times 10^{-6}
 \]
State-of-the-art is event by event coalescence on MC data for $p\bar{p}$ spectra with a choice of p_0. (As opposed to statistical coalescence.)

- Very CPU expensive.
- p_0 often tuned on one data point (ALEPH).

[Coalescence](Dal and Kachelriess, Phys. Rev. D86 (2012) 103536)
State-of-the-art is **event by event coalescence** on MC data for \bar{p} & \bar{n} spectra with a choice of p_0. (As opposed to **statistical coalesence**.)

- Very CPU expensive.

- p_0 often tuned on **one** data point (ALEPH).

$$\text{BR}(Z \rightarrow \bar{d}X) = (5.9 \pm 1.8 \pm 0.5) \times 10^{-6}$$
Coalescence
Coalescence

- We can fit \overline{d} spectra in individual experiments, but get seemingly inconsistent p_0 values with others.
 - Step-function model too simple?
 - What about p_0-dependent (CoM energy) probability?
 - Why do pp experiments seem so different?
Coalescence

Fitting p_0 to data on \bar{d} production

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Source</th>
<th>Coalescence momentum p_0 [MeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALICE (pp)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZEUS (e^-p)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALEPH (Z decay)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISR (pp)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BaBar (e^+e^-)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLEO (γ decay)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Coalescence

- We can fit \bar{d} spectra in individual experiments, but get seemingly inconsistent p_0 values with others.
 - Step-function model too simple?
 - What about p_0-dependent (CoM energy) probability?
 - Why do pp experiments seem so different?
Improving coalescence

- Fit of p_0 to a set of experiments (ALEPH, CLEO, ZEUS + LEP proton spectra) including HERWIG++ hadronization parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default value</th>
<th>Value at χ^2_{min}</th>
<th>Uncertainty4</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_0</td>
<td>$-$</td>
<td>143.2</td>
<td>$+6.2$ $^{-5.5}$</td>
</tr>
<tr>
<td>CLMaxLight</td>
<td>3.25</td>
<td>3.03</td>
<td>$+0.18$ $^{-0.15}$</td>
</tr>
<tr>
<td>PSplitLight</td>
<td>1.20</td>
<td>1.31</td>
<td>$+0.19$ $^{-0.32}$</td>
</tr>
<tr>
<td>PwtD1quark</td>
<td>0.49</td>
<td>0.48</td>
<td>$+0.15$ $^{-0.04}$</td>
</tr>
</tbody>
</table>

Improving coalescence

- Fit of p_0 to a set of experiments (ALEPH, CLEO, ZEUS + LEP proton spectra) including HERWIG++ hadronization parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default value</th>
<th>Value at χ^2_{min}</th>
<th>Uncertainty4</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_0</td>
<td>$-$</td>
<td>143.2</td>
<td>$^{+6.2}_{-5.5}$</td>
</tr>
<tr>
<td>ClMaxLight</td>
<td>3.25</td>
<td>3.03</td>
<td>$^{+0.18}_{-0.15}$</td>
</tr>
<tr>
<td>PSplitLight</td>
<td>1.20</td>
<td>1.31</td>
<td>$^{+0.19}_{-0.32}$</td>
</tr>
<tr>
<td>PwtDIquark</td>
<td>0.49</td>
<td>0.48</td>
<td>$^{+0.15}_{-0.04}$</td>
</tr>
</tbody>
</table>

Total $\chi^2 = 10.6$ with 14.2 effective dof.

Improving coalescence

- Fit of p_0 to a set of experiments (ALEPH, CLEO, ZEUS + LEP proton spectra) including HERWIG++ hadronization parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default value</th>
<th>Value at χ^2_{min}</th>
<th>Uncertainty4</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_0</td>
<td>$-$</td>
<td>143.2</td>
<td>$+6.2$</td>
</tr>
<tr>
<td>ClMaxLight</td>
<td>3.25</td>
<td>3.03</td>
<td>$+0.18$</td>
</tr>
<tr>
<td>PSplitLight</td>
<td>1.20</td>
<td>1.31</td>
<td>$+0.19$</td>
</tr>
<tr>
<td>PwtDIquark</td>
<td>0.49</td>
<td>0.48</td>
<td>$+0.15$</td>
</tr>
</tbody>
</table>

- Total $\chi^2 = 10.6$ with 14.2 effective dof.

- Sounds simple, but 120 CPU hours per parameter point.

A toy model / test case

- Unstable gravitino dark matter (R-parity violation)
 - Interesting as model because of UDD-operators in superpotential:

\[W \sim \lambda_{ijk} L_i L_j \bar{E}_k + \chi'_{ijk} L_i Q_j \bar{D}_k + \chi''_{ijk} \bar{U}_i \bar{D}_j \bar{D}_k \]
A toy model / test case

• Unstable gravitino dark matter (R-parity violation)
 - Interesting as model because of UDD-operators in superpotential:

\[
W \sim \lambda_{ijk} L_i L_j \bar{E}_k + \lambda'_{ijk} L_i Q_j \bar{D}_k + \lambda''_{ijk} \bar{U}_i \bar{D}_j \bar{D}_k
\]
Gravitino \bar{d} spectrum

Bar d flux at Earth

\[\Phi [(m^2 \text{sr GeV/n})^{-1}] \]

\[\lambda = 10^{-5} \]

\[m_{\tilde{\chi}} = 50 \text{ GeV} \]

Prospective limits from GAPS

\[\lambda_{\text{max}} \]

\[m_{\tilde{G}} \text{ [GeV]} \]

- \(L_1 Q_3 \bar{D}_3 \)
- \(L_1 Q_1 \bar{D}_2 \)
- \(\bar{U}_3 \bar{D}_2 \bar{D}_3 \)
- \(\bar{U}_1 \bar{D}_1 \bar{D}_2 \)

Prospective limits from GAPS

![Graph showing prospective limits for various particle configurations. The x-axis represents the mass of the particle, $m_{\tilde{G}}$ in GeV, ranging from 10^1 to 10^3. The y-axis represents the maximum value of a parameter, λ_{max}, ranging from 10^{-9} to 10^0. The graph includes lines for $L_1 Q_3 \bar{D}_3$, $L_1 Q_1 \bar{D}_2$, $\bar{U}_3 \bar{D}_2 \bar{D}_3$, and $\bar{U}_1 \bar{D}_1 \bar{D}_2$. There is a note indicating the previous best limit on $U_1 D_1 D_2$ from PAMELA \bar{p} data.]

ALICE means trouble for coalescence
A new formation model
A new formation model

- Taking a step away from the step function, a probabilistic coalescence:

\[
P(\bar{p}\bar{n} \rightarrow \bar{d}X|k) = \frac{\sigma_{\bar{p}\bar{n} \rightarrow \bar{d}X}(k)}{\sigma_0}
\]

[Dal and AR, Phys. Rev. D91 (2015) 123536]
A new formation model

- Taking a step away from the step function, a probabilistic coalescence:

\[
P(\bar{p}\bar{n} \rightarrow \bar{d}X|k) = \frac{\sigma_{\bar{p}\bar{n} \rightarrow \bar{d}X}(k)}{\sigma_0}
\]

[Dal and AR, Phys. Rev. D91 (2015) 123536]

- Based on cross section data. One free parameter \(\sigma_0\).
Comparison to ALICE data

ALICE vs. Pythia 8
$\sqrt{s} = 7$ TeV
$|y| < 0.5$
Conclusions

• Searches for antideuterons can be a useful way to constrain (or discover!) certain models for dark matter.

• There are significant uncertainties in antideuteron formation models which we have quantified.

• We have introduced a new cross section based model as an alternative to the standard per event coalescence.

 - Code to evaluate coalescence probability available on arXiv as ancillary material.
Bonus material
Antideuteron data fit to new coalescence model

<table>
<thead>
<tr>
<th>Monte Carlo</th>
<th>Experiments</th>
<th>Data points</th>
<th>Best fit p_0 [MeV]</th>
<th>$\chi^2_{p_0}$</th>
<th>Best fit $1/\sigma_0$ [barn$^{-1}$]</th>
<th>$\chi^2_{\sigma_0}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Herwig++</td>
<td>ALICE (\bar{d}), ISR</td>
<td>38</td>
<td>187</td>
<td>646</td>
<td>3.50</td>
<td>196</td>
</tr>
<tr>
<td></td>
<td>BABAR, CLEO, LEP</td>
<td>16</td>
<td>96</td>
<td>73.6</td>
<td>0.68</td>
<td>29.2</td>
</tr>
<tr>
<td></td>
<td>All experiments</td>
<td>54</td>
<td>123</td>
<td>2859</td>
<td>1.43</td>
<td>2146</td>
</tr>
<tr>
<td>Pythia 8</td>
<td>ALICE (\bar{d}), ISR</td>
<td>38</td>
<td>193</td>
<td>255</td>
<td>2.63</td>
<td>58.2</td>
</tr>
<tr>
<td></td>
<td>BABAR, CLEO, LEP</td>
<td>16</td>
<td>140</td>
<td>30.5</td>
<td>1.18</td>
<td>16.7</td>
</tr>
<tr>
<td></td>
<td>All experiments</td>
<td>54</td>
<td>174</td>
<td>888</td>
<td>2.13</td>
<td>510</td>
</tr>
</tbody>
</table>

Dof 37 for ALICE & ISR, 15 for BABAR, CLEO & LEP
Why you should be careful with Pythia & Herwig

[Graph showing ALICE data compared to Pythia 8 and Herwig++ predictions.]

\[\sqrt{s} = 7 \text{ TeV} \]

\[|y| < 0.5 \]
Statistical coalescence
Statistical coalescence

- Models traditionally used **statistical coalescence**

\[
\frac{dN_{\bar{d}}}{dT_{\bar{d}}} = \frac{p_0^3}{6} \frac{m_{\bar{d}}}{m_{\bar{n}} m_{\bar{p}}} \frac{1}{\sqrt{T_{\bar{d}}^2 + 2m_{\bar{d}}T_{\bar{d}}}} \frac{dN_{\bar{n}}}{dT_{\bar{n}}} \frac{dN_{\bar{p}}}{dT_{\bar{p}}}
\]
Statistical coalescence

- Models traditionally used **statistical coalescence**

\[
\frac{dN_{\bar{d}}}{dT_{\bar{d}}} = \frac{p_0^3}{6} \frac{m_{\bar{d}}}{m_{\bar{n}} m_{\bar{p}}} \frac{1}{\sqrt{T_{\bar{d}}^2 + 2m_{\bar{d}}T_{\bar{d}}}} \left(\frac{dN_{\bar{n}}}{dT_{\bar{n}}} \right) \left(\frac{dN_{\bar{p}}}{dT_{\bar{p}}} \right)
\]
Statistical coalescence

- Models traditionally used **statistical coalescence**

\[
\frac{dN_{d\bar{d}}}{dT_{d\bar{d}}} = \frac{p_0^3}{6} \frac{m_{d\bar{d}}}{m_{\bar{n}} m_{\bar{p}}} \frac{1}{\sqrt{T_{d\bar{d}}^2 + 2m_{d\bar{d}} T_{d\bar{d}}}} \left(\frac{dN_{\bar{n}}}{dT_{\bar{n}}} \right) \left(\frac{dN_{\bar{p}}}{dT_{\bar{p}}} \right)
\]
Statistical coalescence

• Models traditionally used **statistical coalescence**

\[
\frac{dN_{\bar{d}}}{dT_{\bar{d}}} = \frac{p_0^3}{6} \frac{m_{\bar{d}}}{m_{\bar{n}} m_{\bar{p}}} \frac{1}{\sqrt{T_{\bar{d}}^2 + 2m_{\bar{d}}T_{\bar{d}}}} \left(\frac{dN_{\bar{n}}}{dT_{\bar{n}}} \frac{dN_{\bar{p}}}{dT_{\bar{p}}} \right)
\]

• Shown to be bad.

Improving coalescence

- Individual and common fits of HERWIG++ to a set of antideuteron measurements

<table>
<thead>
<tr>
<th>Experiment</th>
<th>χ^2, best fit p_0</th>
<th>χ^2, $p_0 = 152$ MeV</th>
<th>N_{bins}</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALEPH</td>
<td>0.0</td>
<td>0.2</td>
<td>1</td>
</tr>
<tr>
<td>CLEO</td>
<td>7.6</td>
<td>10.5</td>
<td>5</td>
</tr>
<tr>
<td>ZEUS</td>
<td>3.7</td>
<td>3.8</td>
<td>3</td>
</tr>
<tr>
<td>CERN ISR</td>
<td>5.0</td>
<td>33.2</td>
<td>4+4</td>
</tr>
<tr>
<td>ALICE</td>
<td>5.1</td>
<td>5.5</td>
<td>9</td>
</tr>
</tbody>
</table>

[Dal and ARR, Phys. Rev. D89 (2014) 103504]
Propagation

dbar spectrum in rest frame → PhD-student → dbar spectrum at Earth
Propagation

\[- D(T) \nabla^2 f + \frac{\partial}{\partial z} (\text{sign}(z) f V_c) = Q - 2h \delta(z) \Gamma_{\text{ann}}(T) f \]

<table>
<thead>
<tr>
<th>Model</th>
<th>(L) in kpc</th>
<th>(\delta)</th>
<th>(D_0) in kpc(^2) Myr(^{-1})</th>
<th>(V_c) in km s(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>max</td>
<td>15</td>
<td>0.46</td>
<td>0.0765</td>
<td>5</td>
</tr>
<tr>
<td>med</td>
<td>4</td>
<td>0.7</td>
<td>0.0112</td>
<td>12</td>
</tr>
<tr>
<td>min</td>
<td>1</td>
<td>0.85</td>
<td>0.0016</td>
<td>13.5</td>
</tr>
</tbody>
</table>
The standard plot

\[
\phi_D (m^{-2} s^{-1} sr^{-1} GeV^{-1})
\]

solar maximum

F. Donato, N. Fornengo, P. Salati (1999)