

aped

Telescope

SEARCHES FOR AXIONLIKE PARTICLES WITH THE FERMI LARGE AREA TELESCOPE

MANUEL MEYER FOR THE FERMI-LAT COLLABORATION TeVPA 2016 CERN, GENEVA, SWITZERLAND SEPTEMBER 15, 2016 [MANUEL.MEYER@FYSIK.SU.SE](mailto:manuel.meyer@fysik.su.se)

AXIONS AND AXION-LIKE PARTICLES

- \circ QCD: has CP violating term with strength θ , measurement: $|\theta| < 10$
- Introduce symmetry, θ is a dynamical field, relaxes to zero in potential
- \bullet Symmetry broken at scale $f_{\scriptscriptstyle a}^{} \Rightarrow$ **new particle: the axion!** (similar to Higgs mechanism)
- Axion mass *m a ~ f a -1*
- Oscillations around minimum: act like cold dark matter
- Axion-like particles (ALPs):
	- arise in similar way, also dark-matter candidate
	- plethora of ALPs predicted in string theory (axiverse) and other standard model extensions
	- ALP mass independent of *f a*

[Peccei & Quinn 77; Wilczek 78; Weinberg 78; Preskill et al. 83; Abbott & Sikivie 83; Witten 84; e.g. Arvanitaki et al. 09; Cicoli et al. 12; Arias et al. 2012]

DETECTING AXIONS/ALPs WITH GAMMA RAYS

See, e.g., Fermi-LAT constraints for decaying relativistic axions produced in neutron stars [Berenji, Gaskins, MM 2016]

DETECTING AXIONS/ALPs WITH GAMMA RAYS

axions produced in neutron stars [Berenji, Gaskins, MM 2016]

DETECTING GAMMA RAYS WITH THE FERMI LAT

- **Survey** mode: observes full sky every 3 hours
- Public data, available within 12 hours

2012; Wouters & Brun 2012,2013; Abramowski et al. 2013; MM et al. 2014, MM & Conrad 2014; Ajello et al. 2016; Berg et al. 2016]

[\[Credit: SLAC National Accelerator Laboratory/Chris Smith\]](https://svs.gsfc.nasa.gov/vis/a010000/a012300/a012317/ALP_2_sequences.gif) [Hooper & Serpico 2007; Fairbairn et al. 2011;Horns et al.

SEARCH FOR IRREGULARITIES WITH FERMI LAT FROM NGC 1275

- Radio galaxy NGC 1275, bright *Fermi* source [e.g. Abdo et al. 2009]
- In the center of **cool-core** Perseus cluster
- Rotation measures: central B field ~25μG [Taylor+ 2006]
- \bullet **B** \geq **2** µG from non-observation of ɣ rays [Aleksic et al. 2012]

 $\overline{[A]}$ ello et al. 2016]

MODELING PHOTON-ALP CONVERSIONS IN PERSEUS CLUSTER

- Considered *B* fields: Perseus cluster & Milky Way
- Conservative estimate of central *B* field: 10 µG [Aleksić et al. 2012]
- **•** Includes EBL absorption

FERMI-LAT DATA ANALYSIS

- 6 years of Pass 8 Source data
- Split into analysis EDISP event types
- Method: log-likelihood ratio test for no-ALP and ALP hypothesis
- Hypothesis test calibrated with Monte-Carlo simulations

NO ALP OBSERVED: CONSTRAINTS FIT WITH ALPs NOT PREFERRED

AXIONLIKE PARTICLES FROM CORE COLLAPSE SUPERNOVAE

ALPs would be produced in a core-collapse SN explosion via Primakoff process

Could convert into gammarays in Galactic magnetic field

Non-observation of signal from SN1987A with Gamma-Ray Spectrometer on Solar Maximum Mission satellite still strongest bounds for ALPs with masses *ma*≲ 1neV [Payez et al. 2015]

EXPECTED ALP SIGNAL

- ALPs produced in SN core within \sim 10 s after explosion and escape core \rightarrow short burst
- **Spectrum** has thermallike shape, peaks at ~50 MeV
- Gamma rays would arrive co-incident with SN neutrinos (provides time tag)

ALP / γ -ray flux integrated over explosion time

Better gamma-ray sensitivity and large FoV of *Fermi* LAT promise unparalleled sensitivity for ALPs in case of a Galactic core-collapse SN within *Fermi*-LAT lifetime and FoV

GC LIGHT CURVE OF ONE GTI WITHIN 68% PSF CONTAINMENT

13

- **Use Galactic Center** as target
- Estimate number of background counts from data:
	- From one exposure of the Galactic Center (~1500s)
	- Energy Range: 50-500 MeV
	- Within 68% PSF (~ 11 degrees @ 50 MeV)
	- Use 20s time bins (full explosion time)
- Expected number of background counts: ~3.3
- Compare against number of expected counts from SN explosion
- Use statistical test for low-count regime [Feldman & Cousins 1998]

EXPECTED COUNTS FROM ALP MODEL

- Integrated over explosion $time$ (~20s)
- Integrated over energy, 50-500 MeV
- Folded with Fermi-LAT instrumental response function
- Expected number of counts *~ ga***^ɣ** *4*
- Little dependence on progenitor mass

Assuming 4 background counts in one 20s time bin: Exclude ALP models predicting more than 6.4 counts at 95% confidence

CONSTRAINTS & SENSITIVITIES

LIMITS

SENSITIVITIES

LIMITS

SUMMARY & CONCLUSIONS

- Axions and ALPs arise in various extensions of the Standard Model
- Well motivated dark-matter candidates
- We have searched for spectral irregularities induced by photon-ALP oscillations in the spectrum of NGC 1275
- We do not find any indications for ALPs and set the strongest bounds to date between 0.5 ≲ *m*_a ≲ 20 neV
- In this mass range, the limits are comparable to the sensitivity of future laboratory experiments
- Together with other limits, the possibility that ALPs could explain a reduced **ɣ**-ray opacity of the Universe is now strongly constrained
- *Fermi-LAT* observation of galactic core collapse SN would yield strong bounds on ALP parameters, would probe dark-matter parameter space

BACK-UP SLIDES

AXIONS/ALPs AS DARK MATTER MISALIGNMENT MECHANISM

- Coherent oscillations = dark matter axions
- Oscillations should start at latest by matter-radiation equality, so that ALP mass is stable
- Oscillation frequency $\omega = m_a$

• Energy density: $\rho_{a {\rm DM}} \sim$ 1 2 $(75\,\mathrm{MeV})^4\theta_0^2$

$$
\boxed{\frac{g_{a\gamma}}{\text{GeV}^{-1}} \lesssim 2.2 \times 10^{-12} \frac{\alpha}{2\pi} \theta_1 \mathcal{N} \sqrt{\frac{m_a}{\text{eV}} \frac{\Omega_{\text{DM}}}{\Omega_a}}}
$$

[Slide adopted from J.Redondo] [e.g. Arias et al. 2012]

TIME INTEGRATED EXPECTED ALP / Ɣ-RAY FLUX

• Integrated over SN explosion time (20s for 18 solar masses, 10s for 10 solar mass progenitor)

SYSTEMATIC CHECKS

- ✓ Different progenitor masses
- **✓** Different Galactic magnetic field models (largest effect)
- ✓ Different sources (less background compared to GC)
- Different time intervals
- ✓ Analysis repeated with different time binning of 30 and 60s

CONSTRUCTING F&C CONFIDENCE INTERVAL

[Feldman & Cousins 1998; Rolke et al. 2005]

PHOTON-ALP CONVERSION IN GALACTIC MAGNETIC FIELD

- Mixing in coherent component of B field
- Position of SN will determine ɣ-ray yield
- Two state-of-the-art models implemented

 $g_{a} = 5 \times 10^{-11}$ GeV-1 pure ALP beam propagating through entire Milky Way [Jansson & Farrar 2012 model]

UNDERSTANDING THE LIMITS

COMPARING EXCLUDED ALP PARAMETERS WITH BEST FIT

BEST FIT — NOT PREFERRED

COMPARING EXCLUDED ALP PARAMETERS WITH BEST FIT

EXCLUDED AT > 95% C.L.

COMPARING EXCLUDED ALP PARAMETERS WITH BEST FIT

EXCLUDED AT 95% C.L.

[Ajello et al. 2016]

SYSTEMATIC UNCERTAINTIES

B-field modeling 7.0 5.0 3.0 $g_{a\gamma}$ (10⁻¹¹ GeV⁻¹)
0.7
0.3
0.3 Fiducial $q = -11/3$ $\sigma_B = 20 \,\mu\text{G}$ $r_{\rm max}$ = 100 kpc $\overline{0}$. 100 $10¹$ m_a (neV) 7.0 5.0 3.0 $g_{a\gamma}$ (10⁻¹¹ GeV⁻¹)
0.7 0.5 0.3 $1.0¹$ Fiducial $\epsilon = 0.05$ $\epsilon = 0.1$ Energy dispersion 0.1 $\overline{10^0}$ $10¹$

• B-field modeling:

- Kolmogorov turbulence: Power-law index of turbulence *q*
- central magnetic field σ*^B*
- Maximal spatial extent of *B* field r_{max}
- **Increasing σ_B** increases excluded area of parameter space by 43%

• Energy dispersion:

- Artificially broadened with 5%,10%, 20%
- Reduces excluded parameter space up to 25%

[Ajello et al. 2016] 31

 m_a (neV)

 m_a (neV)

NULL DISTRIBUTION FROM MC WHAT IS THE TS VALUE FOR WHICH WE CAN CLAIM EVIDENCE FOR ALPS?

- Non-linear behaviour of ALP effect, scales with photon-ALP coupling, ALP mass, and magnetic field
- Testing 228 values of ALP mass and photon-ALP coupling introduces trial factor
- ⇒ Derive null distribution from simulations
- For *i*-th B-field realization and *j*-th pseudo experiment the null distribution is formed by the test statistic

$$
TS_{ij} = -2 \ln \left(\frac{\mathcal{L}(\mu_0, \hat{\boldsymbol{\theta}} | \mathbf{D}_j)}{\mathcal{L}(\hat{\mu}_i, \hat{\boldsymbol{\theta}} | \mathbf{D}_j)} \right)
$$

NULL DISTRIBUTION FROM MC WHAT IS THE TS VALUE FOR WHICH WE CAN CLAIM EVIDENCE FOR ALPS?

SEARCHING FOR AN ALP SIGNAL WITH LOG LIKELIHOOD RATIO TEST

Joint likelihood ∀ event types *i* and reconstructed energy bins *k*':

$$
\mathcal{L}(\boldsymbol{\mu},\boldsymbol{\theta}|\mathbf{D})=\prod_{i,k'}\mathcal{L}(\mu_{ik'}(m_a,g_{a\gamma},\mathbf{B}),\theta_i|D_{ik'})
$$

expected number of counts nuisance parameters

Test null hypothesis (no ALP, μ_0) with likelihood ratio test:

$$
TS = -2 \ln \left(\frac{\mathcal{L}(\mu_0, \hat{\hat{\boldsymbol{\theta}}} | \mathbf{D})}{\mathcal{L}(\hat{\mu}_{95}, \hat{\boldsymbol{\theta}} | \mathbf{D})} \right)
$$

data

B FIELD RANDOM: SIMULATE MANY REALIZATIONS AND SELECT 95% QUANTILE OF LIKELIHOOD **DISTRIBUTION**

Threshold TS value for which we could claim ALP detection derived from fit to Monte Carlo simulations (Asymptotic theorems not applicable)

TS_{thr} (3σ) = 33.1