

ace Telescope

SEARCHES FOR AXIONLIKE PARTICLES WITH THE FERMI LARGE AREA TELESCOPE

MANUEL MEYER FOR THE FERMI-LAT COLLABORATION TeVPA 2016 CERN, GENEVA, SWITZERLAND SEPTEMBER 15, 2016 MANUEL.MEYER@FYSIK.SU.SE

AXIONS AND AXION-LIKE PARTICLES

- QCD: has CP violating term with strength θ , measurement: $|\theta| < 10$
- Introduce symmetry, θ is a dynamical field, relaxes to zero in potential
- Symmetry broken at scale f_a ⇒ new particle: the axion! (similar to Higgs mechanism)
- Axion mass *m_a* ~ *f_a*
- Oscillations around minimum: act like cold dark matter
- Axion-like particles (ALPs):
 - arise in similar way, also **dark-matter candidate**
 - plethora of ALPs predicted in string theory (axiverse) and other standard model extensions
 - ALP mass independent of f_a

[Peccei & Quinn 77; Wilczek 78; Weinberg 78; Preskill et al. 83; Abbott & Sikivie 83; Witten 84; e.g. Arvanitaki et al. 09; Cicoli et al. 12; Arias et al. 2012]

DETECTING AXIONS/ALPs WITH GAMMA RAYS

See, e.g., Fermi-LAT constraints for decaying relativistic axions produced in neutron stars [Berenji, Gaskins, MM 2016]

DETECTING AXIONS/ALPs WITH GAMMA RAYS

decaying relativistic axions produced in neutron stars [Berenji, Gaskins, MM 2016]

DETECTING GAMMA RAYS WITH THE FERMI LAT

Energy range	20 MeV - over 300 GeV
Effective Area (E > 1 GeV)	~ 1 m ²
Point spread function (PSF)	~ 0.8° @ 1 GeV
Energy resolution $\Delta E/E$	5% - 15% @ 10 GeV
Field of view	2.4 sr
Orbital period	91 minutes
Altitude	565 km

- Survey mode: observes full sky every 3 hours
- **Public data**, available within 12 hours

[Hooper & Serpico 2007; Fairbairn et al. 2011;Horns et al. 2012; Wouters & Brun 2012,2013; Abramowski et al. 2013; MM et al. 2014, MM & Conrad 2014; Ajello et al. 2016; Berg et al. 2016] [Credit: SLAC National Accelerator Laboratory/Chris Smith]

SEARCH FOR IRREGULARITIES WITH FERMI LAT FROM NGC 1275

- Radio galaxy NGC 1275, bright Fermi source [e.g. Abdo et al. 2009]
- In the center of cool-core
 Perseus cluster
- Rotation measures: central B field ~25µG [Taylor+ 2006]
- B ≥ 2 µG from non-observation of γ rays [Aleksic et al. 2012]

MODELING PHOTON-ALP CONVERSIONS IN PERSEUS CLUSTER

- Considered *B* fields: Perseus cluster
 & Milky Way
- Conservative estimate of central B field: 10 µG [Aleksić et al. 2012]
- Includes EBL absorption

 $P_{\gamma\gamma}(E, m_a, g_{a\gamma}, \mathbf{B})$

Gamma-ray Space Telescope

FERMI-LAT DATA ANALYSIS

- 6 years of Pass 8 Source data
- Split into analysis **EDISP event types**
- Method: log-likelihood ratio test for no-ALP and ALP hypothesis
- Hypothesis test calibrated with Monte-Carlo simulations

NO ALP OBSERVED: CONSTRAINTS FIT WITH ALPS NOT PREFERRED

AXIONLIKE PARTICLES FROM CORE COLLAPSE SUPERNOVAE

ALPs would be **produced in a core-collapse SN** explosion via Primakoff process

Could convert into gammarays in Galactic magnetic field

Non-observation of signal from SN1987A with Gamma-Ray Spectrometer on Solar Maximum Mission satellite still strongest bounds for ALPs with masses $m_a \leq 1$ neV [Payez et al. 2015]

EXPECTED ALP SIGNAL

- ALPs produced in SN core within ~10 s after explosion and escape core → short burst
- Spectrum has thermallike shape, peaks at ~50 MeV
- Gamma rays would arrive co-incident with SN neutrinos (provides time tag)

ALP / γ -ray flux integrated over explosion time

Better **gamma-ray sensitivity and large FoV** of *Fermi* LAT promise **unparalleled sensitivity** for ALPs in case of a Galactic core-collapse SN within *Fermi*-LAT lifetime and FoV

GC LIGHT CURVE OF ONE GTI WITHIN 68% PSF CONTAINMENT

- Use Galactic Center as target
- Estimate number of background counts from data:
 - From one exposure of the Galactic Center (~1500s)
 - Energy Range: 50-500 MeV
 - Within 68% PSF (~ 11 degrees @ 50 MeV)
 - Use **20s time bins** (full explosion time)
- Expected number of background counts: ~3.3
- Compare against number of expected counts
 from SN explosion
- Use **statistical test for low-count regime** [Feldman & Cousins 1998]

EXPECTED COUNTS FROM ALP MODEL

- Integrated over explosion time (~20s)
- Integrated over **energy**, 50-500 MeV
- Folded with Fermi-LAT
 instrumental response function
- Expected number of counts ~ g_{ay}^4
- Little dependence on progenitor mass

Assuming 4 background counts in one 20s time bin: Exclude ALP models predicting more than 6.4 counts at 95% confidence

CONSTRAINTS & SENSITIVITIES

LIMITS

SENSITIVITIES

LIMITS

SUMMARY & CONCLUSIONS

- Axions and ALPs arise in various extensions of the Standard Model
- Well motivated **dark-matter candidates**
- We have searched for spectral irregularities induced by photon-ALP oscillations in the spectrum of NGC 1275
- We do not find any indications for ALPs and set the strongest bounds to date between
 0.5 ≤ m_a ≤ 20 neV
- In this mass range, the limits are comparable to the sensitivity of future laboratory experiments
- Together with other limits, the possibility that ALPs could explain a reduced y-ray opacity of the Universe is now strongly constrained
- Fermi-LAT observation of galactic core collapse SN would yield strong bounds on ALP parameters, would probe dark-matter parameter space

BACK-UP SLIDES

AXIONS/ALPs AS DARK MATTER MISALIGNMENT MECHANISM

- Coherent oscillations = dark matter axions
- Oscillations should start at latest by matter-radiation equality, so that ALP mass is stable
- Oscillation frequency $\omega = m_a$

• Energy density: $ho_{a{
m DM}}\sim rac{1}{2}(75\,{
m MeV})^4 heta_0^2$

$$\frac{g_{a\gamma}}{\text{GeV}^{-1}} \lesssim 2.2 \times 10^{-12} \frac{\alpha}{2\pi} \theta_1 \mathcal{N} \sqrt{\frac{m_a}{\text{eV}} \frac{\Omega_{\text{DM}}}{\Omega_a}}$$

[e.g. Arias et al. 2012] [Slide adopted from J.Redondo]

TIME INTEGRATED EXPECTED ALP / ¥-RAY FLUX

 Integrated over SN explosion time (20s for 18 solar masses, 10s for 10 solar mass progenitor)

SYSTEMATIC CHECKS

- ✓ Different progenitor masses
- ✓ Different Galactic magnetic field models (largest effect)
- ✓ Different sources (less background compared to GC)
- ✓ Different time intervals
- ✓ Analysis repeated with different time binning of 30 and 60s

	\mathbf{GC}	Betelgeuse	M31
R.A. (°)	266.42	88.79	10.63
Dec. $(^{\circ})$	-28.99	7.41	41.30
Distance (kpc)	8.5	0.197	778
$t_0 (MJD)$	57,231.582	57,231.284	57,231.144
Δt (s)	1581	1519	1079
$\langle r_{68} \rangle (^{\circ})$	10.92	9.73	10.37
\hat{b}	3.32	1.11	0.94
α	0.014	0.014	0.030
$\mu_{ m UL}$	6.43	5.61	4.19

CONSTRUCTING F&C CONFIDENCE INTERVAL

[Feldman & Cousins 1998; Rolke et al. 2005]

23

PHOTON-ALP CONVERSION IN GALACTIC MAGNETIC FIELD

- Mixing in coherent
 component of B field
- Position of SN will determine γ-ray yield
- Two state-of-the-art models implemented

g_{aγ} = 5 x 10⁻¹¹ GeV⁻¹ pure ALP beam propagating through entire Milky Way [Jansson & Farrar 2012 model]

UNDERSTANDING THE LIMITS

[Ajello et al. 2016]

Energy (GeV)

COMPARING EXCLUDED ALP PARAMETERS WITH BEST FIT

BEST FIT — NOT PREFERRED

COMPARING EXCLUDED ALP PARAMETERS WITH BEST FIT

EXCLUDED AT > 95% C.L.

COMPARING EXCLUDED ALP PARAMETERS WITH BEST FIT

EXCLUDED AT 95% C.L.

SYSTEMATIC UNCERTAINTIES

B-field modeling:

- Kolmogorov turbulence: Power-law index of turbulence q
- central magnetic field $\sigma_{\scriptscriptstyle B}$
- Maximal spatial extent of B field r_{max}
- Increasing σ_B increases excluded area of parameter space by 43%

• Energy dispersion:

- Artificially broadened with 5%,10%, 20%
- Reduces excluded parameter space up to 25%

NULL DISTRIBUTION FROM MC WHAT IS THE TS VALUE FOR WHICH WE CAN CLAIM EVIDENCE FOR ALPS?

- Non-linear behaviour of ALP effect, scales with photon-ALP coupling, ALP mass, and magnetic field
- Testing 228 values of ALP mass and photon-ALP coupling introduces trial factor
- ⇒ Derive null distribution from simulations
- For *i*-th B-field realization and *j*-th pseudo experiment the null distribution is formed by the test statistic

$$\mathrm{TS}_{ij} = -2\ln\left(\frac{\mathcal{L}(\boldsymbol{\mu}_0, \hat{\boldsymbol{\theta}} | \mathbf{D}_j)}{\mathcal{L}(\hat{\boldsymbol{\mu}}_i, \hat{\boldsymbol{\theta}} | \mathbf{D}_j)}\right)$$

NULL DISTRIBUTION FROM MC WHAT IS THE TS VALUE FOR WHICH WE CAN CLAIM EVIDENCE FOR ALPS?

SEARCHING FOR AN ALP SIGNAL WITH LOG LIKELIHOOD RATIO TEST

Joint likelihood \forall event types *i* and reconstructed energy bins k':

$$\mathcal{L}(\boldsymbol{\mu}, \boldsymbol{\theta} | \mathbf{D}) = \prod_{i,k'} \mathcal{L}(\mu_{ik'}(m_a, g_{a\gamma}, \mathbf{B}), \theta_i | D_{ik'})$$

expected number nuisance of counts parameters

Test null hypothesis (no ALP, μ_0) with likelihood ratio test:

$$TS = -2 \ln \left(\frac{\mathcal{L}(\boldsymbol{\mu}_0, \hat{\boldsymbol{\theta}} | \mathbf{D})}{\mathcal{L}(\hat{\boldsymbol{\mu}}_{95}, \hat{\boldsymbol{\theta}} | \mathbf{D})} \right)$$

data

B FIELD RANDOM: SIMULATE MANY REALIZATIONS AND SELECT 95% QUANTILE OF LIKELIHOOD DISTRIBUTION

Threshold TS value for which we could claim ALP detection **derived from fit to Monte Carlo** simulations (Asymptotic theorems not applicable)

$TS_{thr} (3\sigma) = 33.1$