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Dark matter: the mystery of this century

Observations
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e Property

No electric and color charge

weakly interacting with normal matter
stable or long lived

not in SM particle list



Dark Matter Searches

DM-SM
mediators
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@ Direct detection
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e nuclear recoils from DM scattering
@ Collider searches

e typical signal: missing energy + mono object
e Indirect detection (our focus)

o classified by annihilation product: ~, v, e™...



DM Indirect Detection: p-wave challenge @

@ p-wave annihilation is generally harder to detect than s-wave
o (ov) = opv?

o at freeze out (ov) = gov2 ~ 107%cm?/s, v2 ~ 0.26

e today v ~ 1073 for DM in galaxy, suppressed by v? ~ 10~°

o generally very weak constraint from indirect detection

@ how to test p-wave annihilation?

e can p-wave annihilation has stronger signal than s-wave?
e Yes, dark gamma ray burst!
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DM Indirect detection from Sun
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© v from Sun: IceCube, ANTARES and Super-K

history back to 1985, Silk et al, Krauss et al...
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DM Indirect detection from Sun

Py X velocity
distribution

v interactions

© v from Sun: IceCube, ANTARES and Super-K

history back to 1985, Silk et al, Krauss et al...

@ metastable mediator from Sun: e.g. A’

(Schuster et alx2, Bell et al, Meade et al, Batell et al, Feng et al)



DM annihilation from the Sun

Capture and Annihilation (dN/dt = C.,, — C.,,N?)

@ Conditions:
o (o= [d¥r (oVia) N3y(r) ~ 10753571
o Cop=13; fOR“a'dr 4rr? %\(/r) ~ 10?2571
e parameters: mpy = 100GeV/, U.I;D =10"%¢

and (ovie) =3 x 10726cm3s1

m?
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DM annihilation from the Sun

Capture and Annihilation (dN/dt = C.,, — C.,,N?)

@ Conditions:
o (o= Nifd3 (0 Veet) M3 (r) ~ 10753571
o Coap = Zi fo " dr 4 r? 7‘15\(/ ) 102251
e parameters: mpy = 100GeV/, 05 =10
and (ovie) =3 x 10726cm3s1
© Results:
o N(t)= 1/%tanhti — % ~ 10%7
0 teg = 1/ Ceap Cann ~ 10155, tsun = 10'7s
o C,pnN?2 = Ceap = 10%%s~

—40 cm2




DM annihilation from the Sun

Capture and Annihilation (dN/dt = Ce,p — Cann/\/2)
@ Conditions:

° C?S,;Jnn = # fd3r <O'Vrel> nzDM(r) ~ 10753571

) Ccap = Zi fORstardr 47rr2 dg,-\(/r) N 1022571

e parameters: mppy = 100GeV/, U.I;D = 10~%0¢cm?

and (ovie) =3 x 10726cm3s1

@ Results:

o N(t)= \/?tanh £ % ~ 10%7

° teq = 1/ Ccap Cann ~ 10155, tsun = 10175

° CannN2 = Ccap = 1022571

© Conclution: Capture and Annihilation is in
Equilibrium!

@ If in equilibrium, no difference between s-wave and
p-wave annihilation
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DM annihilation from Supernova

Tracing DM accumulation in a massive star

@ Same as Sun
[} dN/dt - chp - C‘a/mN2 + Cse/fN




DM annihilation from Supernova

Tracing DM accumulation in a massive star
© Same as Sun

dN/dt = Ccap - Ca/m N2 + Cse/fN

@ Different from Sun

O(108) further than Sun, ~ lkpc

much heavier than Sun, 2 8Ms,,

O(1072) shorter lifetime ~ 10'°s

density, temperature and chemical composition
changes with time much faster

Capture and Annihilation is Not in Equilibrium!
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DM annihilation from Supernova: preparation @

@ Assumptions

o Quasi-instantaneous thermalization
o fermionic DM annihilates to O(1)GeV light mediator: dark photon
(s-wave) or dark scalar (p-wave)
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@ Assumptions
o Quasi-instantaneous thermalization
o fermionic DM annihilates to O(1)GeV light mediator: dark photon
(s-wave) or dark scalar (p-wave)
@ Parameters
pi(r,t) and T(r,t) from Herger et al
mpm € [10,10%]GeV, 0P = 107 cm?, o7 = 10746 cm?
(ovrel) fixed by relic abundance, Sommerfeld enhancement considered
Galactic DM density p%a,(ﬂ: Einasto profile



DM annihilation from Supernova: preparation @

@ Assumptions

o Quasi-instantaneous thermalization
o fermionic DM annihilates to O(1)GeV light mediator: dark photon
(s-wave) or dark scalar (p-wave)

@ Parameters
e pi(r,t) and T(r,t) from Herger et al
mpm € [10,10%]GeV, 0P = 107 cm?, o7 = 10746 cm?
(ovrel) fixed by relic abundance, Sommerfeld enhancement considered
o Galactic DM density p%),: Einasto profile

© DM evolution
Nom(t) = Ceap(t) = Cann (£)Nom(t)? + Cocie(t) Nom(t)
o Caap=1>; fORSta' dr 4mr? df/i\(/r)
o CounN3y = [d3r (oviel) mip(r)

npm(r) = no exp[—mpm¢o(r)/ Towm]
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DM Distribution in the Star
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@ DM concentrated in the star as expected

o nDM(r) = Np exp[—mDMng(r)/TDM]
o Large C.,, at early time due to large osp on H
o Cep at later time dominated by H in the outer layers and N
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DM Evolution in the Star JG‘U
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© p-wave DM has higher Npy;, than s-wave!

* NDM(t) = Ccap(t) - Cann(t)NDM(t)2
o after t < 10%s, Npwm does not change due to too short time
o lighter DM has larger Npy due to larger Ce,p, and smaller C,,
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DM Evolution in the Star JG‘U
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© p-wave DM has higher Npy;, than s-wave!

° NDM(t) = Ccap(t) — Cann(f)NDM(t)Z
o after t < 10%s, Npwm does not change due to too short time
o lighter DM has larger Npy due to larger Ce,p, and smaller C,,

@ Capture and Annihilation is Not in Equilibrium!
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DM Annihilation Burst during Supernova JG‘U

@ Assumption
o psy ~ 10¥g/cm?® reaches nuclear density from a larger iron core
o DM particles within Reoe ~ 30km (size of proto-neutron star)
o DM gets thermalized within ~ 107® seconds
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DM Annihilation Burst during Supernova JG‘U

@ Assumption
o psy ~ 10¥g/cm?® reaches nuclear density from a larger iron core
o DM particles within Reoe ~ 30km (size of proto-neutron star)
o DM gets thermalized within ~ 107® seconds
© Result
° NDM(t) = m, Aty ~ (Ci¥N0)7
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Dark Gamma Ray Burst

Properties

@ The mediator decay gives
dN,/dE,

@ An observable gamma ray signal
after v arrival

@ Atpyrst = (Ci/XNO)—l related to
sensitivity
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@ Benchmark locations: 0.1kpc
and 7kpc from GC Mion=630 GeV
10716} osp=10"""cm?

@ Heavier mediator my, provides e 10-%em?

photon flux [cm~?sec™ GeV™]
S

more photons generally 1018 MO0 eeoscever | TN
3 0.1 1 10 100 1000
o Atdur c [(9(10)7 O(].O )] sec fOI’ photon energy[GeV]

p-wave, O(10?) sec for s-wave
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Dark Gamma Ray Burst
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Results
@ p-wave has larger photon flux than s-wave!
@ The best signal is around mpy ~ O(100) GeV
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Summary for Dark Gamma Ray Burst JG‘U

@ We have computed the evolution of the DM core in massive star until
core collapse

@ General process: Npp T Ceap dominates, Npy | C.,,, dominates
especially for s-wave, Npy unchanged due to too short time

p-wave DM accumulates more NgM than s-wave
Total emission AN ~ NgM, more photons from p-wave annihilation
Such dark gamma ray burst can be detected by CTA for p-wave DM

The is around

A unique example: p-wave DM better in indirect detection than
s-wave

Thanks for your attention!
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Backup slides JG‘U C

10740 10%° 1070 10%°
_ 1046 A y2="" .
Mpn=160GeV 05=10""cm*™ - 108 1028
10-45]  my=1.5GeV 05107 CeriZ 10745
Poi =0 o 5 0
1026 ‘u 1026 ‘u
2 2
0 A-50 = I 450 =
é 10 102 E é 10 102 :2
= z, = Z.
£ 22 £ £ 22 =
S 107 075 J10% 1075
1020 UE 1020 UE
107%° s-wave (\s=wave |2 107 e s-wave (\s=wave |2
----- Camn ™ (NB™)” [018 i— Con ™ === G ™ (N ™)° 18
Wl " o T Com ™ (Npy ™) "
0765k 10°
10" 10% 10" 10° 10" 10° 10° 10* 10JLio 10" 10* 10" 10° 107 10° 10° 10* 10JLio
time before core bounce (sec) time before core bounce (sec)

o larger Ce,p due to more DM particles, more efficient

@ smaller ratio between s-wave and p-wave in C,,, because of
Sommerfeld enhancement
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