A global fit of the gamma-ray galactic center excess within the scalar Higgs portal model

[A. Cuoco, B. Eiteneuer, JH, M. Krämer; JCAP 1606 (2016) 050,1603.08228]

Jan Heisig (RWTH Aachen)

⇒ Excess over the known foregrounds in Fermi-LAT data

⇒ Excess over the known foregrounds in Fermi-LAT data

Fermi GC Excess → Galactic bulge emission

[Christoph's talk]

Astrophysical sources

 \Rightarrow Excess over the known foregrounds in I

Astrophysical sources

WIMP Dark Matter

⇒ Excess over the known foregrounds in Fermi-LAT data

⇒ Excess over the known foregrounds in Fermi-LAT data

This work:

- Very simple Dark Matter model (singlet scalar Higgs portal)
- Detailed numerical fit involving further constraints (invisible Higgs width, LUX, relic density,...)
 - Allow for additional non-WIMP DM component (PBHs, axions,...)

$$R = \rho_{\text{WIMP}}/\rho_{\text{DM, total}}$$

→ Interesting implications

Scalar Singlet Higgs Portal Model

[Silveira, Zee '85; McDonald '94; Burgess, Pospelov, Veldhuis: '01; ...]

- Higgs bilinear $H^\dagger H$ unique (renormalizable) way to directly couple DM to the SM
- Add Singlet Scalar S with Z₂-symmetry:

$$\mathcal{L} = \mathcal{L}_{SM} + \frac{1}{2} \partial_{\mu} S \partial^{\mu} S - \frac{1}{2} m_{S,0}^2 S^2 - \frac{1}{4} \lambda_S S^4 - \frac{1}{2} \lambda_{HS} S^2 H^{\dagger} H$$

(before EWSB)

Scalar Singlet Higgs Portal Model

[Silveira, Zee '85; McDonald '94; Burgess, Pospelov, Veldhuis: '01; ...]

- Higgs bilinear $H^\dagger H$ unique (renormalizable) way to directly couple DM to the SM
- Add Singlet Scalar S with Z₂-symmetry:

$$\mathcal{L} \supset -\frac{1}{2}m_S^2 S^2 - \frac{1}{4}\lambda_S S^4 - \frac{1}{4}\lambda_{HS} h^2 S^2 - \frac{1}{2}\lambda_{HS} vhS^2,$$

where
$$m_S^2 = m_{S,0}^2 + \lambda_{HS} v^2/2$$
. (after EWSB)

Scalar Singlet Higgs Portal Model

[Silveira, Zee '85; McDonald '94; Burgess, Pospelov, Veldhuis: '01; ...]

- \blacksquare Higgs bilinear $H^\dagger H$ unique (renormalizable) way to directly couple DM to the SM
- Add Singlet Scalar S with Z₂-symmetry:

$$\mathcal{L}\supset \frac{1}{2}m_S^2S^2-\frac{1}{4}\lambda_S\,S^4-\frac{1}{4}\lambda_{HS}\,h^2S^2-\frac{1}{2}\lambda_{HS}\,vhS^2\,,$$
 where $m_S^2=m_{S,0}^2+\lambda_{HS}v^2/2.$ (after EWSB)

Important for this work

 \Rightarrow Only two parameters: m_S , λ_{HS}

Dark Matter annihilation

Annihilation processes:

Dark Matter annihilation

Annihilation processes:

Only present above Higgs threshold

[see also e.g. Cline, Scott, Kainulainen, Weniger '13; Duerr, Pérez, Smirnov '15; Beniwal et al. '15]

Gamma-ray spectrum

- Continuous photon spectrum
- Slow in fit
 ⇒ Precompute spectra for all channels with MadGraph/Pythia 8
- During fit: Combine spectra according to contribution

Photon spectra for several masses/couplings:

χ^2 -computation for the GCE

■ Take measured spectrum d_i and covariance matrix Σ_{ij} from [Calore, Cholis, Weniger: 1409.0042]

- Additional uncertainty on the theoretical prediction of the spectrum $\Sigma_{ij} \to \Sigma_{ij} + \Sigma_{ij} \delta_{ij} t_i^2 \sigma_t^2$, $\sigma_t = 10\%$ [Achterberg et al. 1502.05703]
- Large theoretical uncertainties on DM distribution in galaxy:
 - Take NFWc profile
 - Vary around best fit parameters with MC [from Calore, Cholis, Weniger: 1409.0042]
 - ⇒ Distribution for *J*-factor
 - ullet Determine σ_{ξ} for $\xi=\ln(ar{J}/ar{J}_{\mathrm{nom}})$
- Compute χ^2 :

Constraints on the parameter space

Constraints on the parameter space

- (i) Collider constraints:

 Higgs invisible BR
- (ii) Direct detectionconstraints: LUX '13log-likelihood fromLUXCalc [Savage et al. 1502.02667]
- (iii) Dwarf Spheroidal Galaxies
 [Fermi-LAT: 1503.02641]

Constraints on the parameter space

(iv) Gamma-lines:

[Fermi-LAT: 1506.00013]

J-factor different from GCE almost 100% correlation

(v) Relic density constraint

[Planck: 2013]

Apply 10% theoretical uncertainty

[computed with micrOMEGAs]

Fit parameters and tools

- Allow for additional unspecified DM component
 - \rightarrow WIMP fraction: $R = \rho_{\text{WIMP}}/\rho_{\text{DM, total}}$
- 4 scan parameters:

$$m_S$$
: $5 \dots 220 \,\mathrm{GeV}$
 λ_{HS} : $3 \times 10^{-5} \dots 4\pi$
 $\ln(\bar{J}/\bar{J}_{\mathrm{nom}})$: $-4\sigma_{\xi} \dots 4\sigma_{\xi}$
 R : $10^{-3} \dots 1$

- Use MultiNest (nested sampling algorithm) [Feroz et al. '13]
- Annihilation cross sections and BRs: micrOMEGAs [Bélanger et al. '14]
- Frequentist interpretation

Results

GCE+BR_{inv}+LUX+dwarfs+ γ -lines+relic density

Large velocity dependence argument

ullet annihilation today: $v_{
m rel} \simeq 10^{-1000}$, freeze out: $v_{
m rel} \lesssim 0.300$

GCE+BR_{inv}+LUX+dwarfs+ γ -lines frelic density

■ Large velocity dependence argund Higgs resonance

$$\sigma v \propto \frac{1}{(m_h^2 - s)^2 + m_h^2 \Gamma_h^2} \simeq \frac{1}{(\delta^2 - 2 r_{\rm rel}^2)^2 + \Gamma_h^2} , \quad \delta^2 \equiv \frac{m_h^2 - 4m_S^2}{m_h^2}$$

- annihilation today: $v_{
m rel} \simeq 10^{-}$ freeze out: $v_{
m rel} \lesssim 0.3$

GCE+BR_{inv}+LUX+dwarfs+ γ -lines+relic density

Large velocity dependence argument

$$\sigma v \propto \frac{1}{(m_h^2 - s)^2 + m_h^2 \Gamma_h^2} \simeq \frac{1}{(\delta^2 - 8)^2 + \Gamma_h^2} \sim \frac{1}{(\delta^2 - 8)^2 + \Gamma_h^2}, \quad \delta^2 \equiv \frac{m_h^2 - 4m_S^2}{m_h^2}$$

ullet annihilation today: $v_{
m rel} \simeq 10^{-1000}$, freeze out: $v_{
m rel} \lesssim 0.300$

Figure 5: Results of a fit to the GCE with free parame

Figure 5: Results of a fit to the GCE with free parame

Figure 5: Results of a fit to the GCE with free parame

Figure 5: Results of a fit to the GCE with free parame

Figure 5: Results of a fit to the GCE with free parame

Figure 5: Resul of a fit to the GCE with free parame

Summary

- GCE: Astrophysics of WIMPs?
- Higgs Portal: Unique coupling to minimal DM
- Singlet Scalar Model: Good fit!
- After constraints: Only Higgs-resonance remains
- Allow for additional non-WIMP DM component
- Non-trivial implications for WIMP fraction near resonance (large velocity dependence)

Back-up I: Future experimental prospects

- Collider constraints: virtually unchallanged
- Constraints from dwarfs: General challenge for GCE
- Direct detection projections:

Back-up II: Photon spectra for best-fit points

GCE only (blue) and after all constraints (red):

Back-up III: Table with best-fit points

$\log L$ contribution	GCE	$+ BR_{\rm inv}$	+LUX	+dwarfs	+lines	+relic den.	2nd region
$m_S [{ m GeV}]$	$45.50^{+5.98}_{-5.36}$	$61.07^{+2.65}_{-1.98}$	$61.55^{+1.78}_{-0.85}$	$61.35^{+1.90}_{-0.79}$	$61.46^{+1.87}_{-0.85}$	$62.70_{-0.18}^{+0.57}$	$62.52^{+0.02}_{-0.01}$
λ_{HS}	$0.17^{+11.67}_{-0.09}$	$0.0125^{+7.31}_{-0.0125}$	$0.0082^{+0.317}_{-0.0082}$	$0.0087^{+0.312}_{-0.0087}$	$0.0082^{+0.315}_{-0.0082}$	$0.022^{+0.015}_{-0.013}$	$0.00029^{+0.0078}_{-0.00010}$
R	$0.68^{+0.32}_{-0.65}$	$1.0_{-1.0}^{+0.0}$	$0.99^{+0.01}_{-0.99}$	$1.0_{-1.0}^{+0.0}$	$1.0_{-1.0}^{+0.0}$	$0.054_{-0.053}^{+0.141}$	$0.498^{+0.502}_{-0.496}$
$\log J/J_{ m nom}$	$0.0^{+0.44}_{-0.44}$	$-0.05^{+0.48}_{-0.36}$	$0.02^{+0.42}_{-0.43}$	$0.22^{+0.36}_{-0.35}$	$0.12^{+0.31}_{-0.29}$	$0.13^{+0.30}_{-0.32}$	$0.13^{+0.32}_{-0.31}$
$\sigma v [10^{-26} \mathrm{cm}^3/\mathrm{s}]$	$1.97^{+1034}_{-1.38}$	$1.28^{+4.1e6}_{-0.61}$	$1.23^{+1.7e6}_{-0.55}$	$0.96^{+1.3e6}_{-0.37}$	$1.04_{-0.42}^{+1.3e6}$	$359^{+9.7e5}_{-327}$	$4.3^{+1.6\mathrm{e}5}_{-0.9}$
$\sigma v R^2 [10^{-26} \text{cm}^3/\text{s}]$	$0.91^{+0.53}_{-0.35}$	$1.28^{+2.02}_{-0.53}$	$1.21^{+0.68}_{-0.45}$	$0.96^{+0.43}_{-0.31}$	$1.04_{-0.32}^{+0.39}$	$1.06_{-0.32}^{+0.42}$	$1.06^{+0.43}_{-0.31}$
$\chi^2_{ m GCE}$	19.3	25.3	25.6	26.0	26.0	26.8	26.7
$p(\chi_{ ext{GCE}}^2)$	0.57	0.20	0.24	0.22	0.21	0.18	0.18
$p(\mathrm{BR_{inv}})$	0.0	0.90	0.97	0.97	0.97	1.0	1.0
$p(\mathrm{LUX})$	0.0	0.32	0.62	0.58	0.62	0.84	1.0
p(dwarfs)	0.18	0.16	0.18	0.24	0.22	0.22	0.22
p(lines R3)	0.5	0.5	0.5	0.5	0.5	0.5	0.5
p(relic den.)	0.03	0.0	0.0	0.0	0.0	0.99	1.0