

Search for Cosmic Ray Anisotropy with the Alpha Magnetic Spectrometer on the International Space Station

S. Zeissler, F. Bindel, I. Gebauer on behalf of the AMS Collaboration TeV Particle Astrophysics 2016, CERN

Institut für Experimentelle Kernphysik

Anisotropy Search in Galactic Cosmic Rays

AMS-02 particle fluxes (e^{-} , e^{+} , p, He) show structures that can not be explained within current models.

Features may be connected to **new phenomena** which might induce some degree of anisotropy in cosmic rays fluxes.

- No anisotropy expected: Change in CR diffusion, DM annihilation
- Might induce anisotropy: Local sources (pulsars for e⁺ and e⁻, local SNRs or Stars)

KIT, Institut für Experimentelle Kernphysik

Anisotropy Search With AMS-02

Large acceptance CR detector as external module aboard ISS orbiting earth at 400 km altitude since May 2011 taking data continuously.

- High precision measurement of particles above atmosphere
- Long time (*nearly*) full sky coverage (*orbit inclination* 51.6°) $\frac{1}{2}$ ⁸⁰ \rightarrow three-dimensional reconstruction of dipole signals
 - \rightarrow three-dimensional reconstruction of dipole signals
- Inside magnetosphere
 - → deflection of particle trajectories (back-propagation)
 - \rightarrow position dependent external particle rates
 - \rightarrow rigidity cutoff (energy dependent exposure)

KIT, Institut für Experimentelle Kernphysik

ISS Orbi

The Alpha Magnetic Spectrometer

Methodology For Anisotropy Search

Reference Map:

Best guess for an **image of an isotropic sky** measured by the detector in the respective data taking period to normalize exposure.

Choices for reference maps:

- (1) other cosmic ray species (e.g. Protons for Leptons)
- (2) same cosmic ray species (at different energies)

Any deviation from these reference maps might be detected as a signal.

A likelihood fit procedure is used to expand the normalized ratio of data and reference into a dipole.

Dipole amplitude:
$$\delta = \sqrt{\rho_{NS}^2 + \rho_{FB}^2 + \rho_{EW}^2}$$

North-South: Forward-Backward: East-West:
 $\rho_{NS} = \sqrt{\frac{3}{4\pi}}a_{10}$ $\rho_{FB} = \sqrt{\frac{3}{4\pi}}a_{11}$ $\rho_{EW} = \sqrt{\frac{3}{4\pi}}a_{1-1}$

Results are stated in the galactic coordinate system.

Positrons Over Electrons – Dipole Components

Back Tracing in Magnetosphere

Back-tracing allows to reconstruct trajectories of cosmic rays detected by AMS-02 at ISS altitude in a deterministic way up to the border of the magnetosphere.

Internal Field: IGRF-12 model

Main earth magnetic field + annual changes

External Field: Tsyganenko 2005 model

Describes earths magnetosphere during quiet and active solar periods

Back Tracing in Magnetosphere

The magnetosphere introduces a displacement with respect the asymptotic direction. This displacement decreases with rigidity.

Positrons Over Protons – Dipole Components

Positrons Over Protons – Limit on Dipole

12 09/16/16 S. Zeissler - CR Anisotropy with AMS-02

Electrons Over Protons* – Dipole Components

Electrons Over Protons* – Limit on Dipole

09/16/16 S. Zeissler - CR Anisotropy with AMS-02 KIT, Institut für Experimentelle Kernphysik

NEW! **Protons Over Low Rigidity (LR) Protons**

- Minimum rigidity limit is given by the maximum geomagnetic cutoff (~32 GV)
- Use high rigidity selection already for low rigidities

15

Protons Over LR Protons – Dipole Components

17 09/16/16 S. Zeissler - CR Anisotropy with AMS-02

KIT, Institut für Experimentelle Kernphysik

Seasonal Variation

Divide the period of analysis (May 2011 – Nov 2015) in **seasons** (4 seasons per year)

- Check for time dependence of a signal (Galactic)
- Detect a possible signal as function of the position inside the Heliosphere or solar activity (GSE – Geocentric Solar Ecliptic)

Seasonal Variation – GSE Coordinates

Search for solar effects.

Conclusions

- Positron and Electron angular distributions are comparable with isotropy
 - for all energies
 - at ISS position and at magnetosphere border
- Proton sky at high rigidities is comparable with the Proton distribution at low rigidities
- No significant seasonal variation observed in any of the observables

Positron Isotropy:

$$\delta_{e^{+/e^{-}}}(>16 \text{ GeV}) < 2\% \text{ at } 95\% \text{ C.L.}$$

 $\delta_{e^{+/p}}(>16 \text{ GeV}) < 2\% \text{ at } 95\% \text{ C.L.}$

Electron Isotropy:

$$\delta_{e}$$
 (>16 GeV) < 0.6% at 95% C.L.

Proton Isotropy:

 δ_{p} (>80 GeV) < 0.3% at 95% C.L.

Outlook

- Become independent of reference sample (absolute anisotropies)
- Extend analysis to other species (*He, Li, …*)
- Study other coordinate systems (full solar cycle \rightarrow GSE)

AMS-02 data-taking will continue until the end of the ISS mission allowing us to set stronger limits in the future.

