Stochastic Acceleration by Turbulence in the Fermi Bubbles

Philipp Mertsch with Vahe Petrosian, Stanford University

> TeVPA 2016, CERN 15 September 2016

UNIVERSITY OF COPENHAGEN FACULTY OF SCIENCE

Fermi-LAT data

gas-correlated emission

Inverse Compton model

some other stuff

Fermi bubbles

- hard spectrum
- sharp edges
- no spectral variation

Hints

Hard spectrum

Sharp edges

Sharp edges

1.5 $\times 10^{-7}$ Edge $b, \ell = (17.4^{\circ}, 345.1^{\circ})$ $\Delta \varphi = 2.4^{\circ} \pm 2.0^{\circ}$ E = 10.0 - 500.0 GeV1.0 $F\left(\frac{1}{\text{cm}^2 \text{sst}}\right)$ 0.50.0 $-0.5L_{-20}$ -15-10-5510 150 φ (deg)

20

Sharp edges

No spectral variation

No spectral variation

Models

Crocker & Aharonian, PRL 106 (2011) 101102;	starbust acitivity; hadronic, 10 Gyr
Guo & Mathews, ApJ 756 (2012) 181; Guo <i>et al.</i> , ApJ 756 (2012) 182	jet; viscosity
Cheng et al., ApJL 731 (2011) 17; ApJ 746 (2012) 116	tidal disruption of stars by SMBH
Zubovas <i>et al.</i> , MNRAS 415 (2012) L21; MNRAS 424 (2012) 666	accretion, possibly with jet
Mertsch & Sarkar, PRL 107 (2011) 091101	stochastic acceleration of e ⁻ ; morphology
Yang <i>et al.</i> , 761 (2012) 185 and MNRAS 436 , 2734 (2013)	jet; B-fields
Fujita <i>et al.</i> , ApJL 775 (2013)	scaled up supernova remnant
Crocker <i>et al.</i> , ApJL 791 (2014) 20; ApJ 808 (2015) 107	outflow; reverse shock, contact discontinuity
Lacki, MNRAS 444 (2014) L39	starbust activity
Muo <i>et al.</i> , ApJ 790 (2014) 109; ApJ 811 (2015) 37	accretion wind
Sarkar <i>et al.</i> , MNRAS 453 (2015) 3827	starbust activity
Sasaki <i>et al.</i> , ApJ 814 (2015) 94	time-dependent stochastic acceleration
Taylor & Giacinti, arXiv:1607.08862	outflow

Morphology and spectrum

Homogeneous volume emissivity gives bump-like profile

thermal bubbles:

- What is the source of energy?
- (M)HD simulations
- Age, size & shape

non-thermal bubbles:

- What is accelerating CRs?
- Kinetic simulations
 = solve transport equation
- Morphology and spectrum in gamma-rays

Shock(s) and morphology

Mertsch & Sarkar, PRL 107 (2011) 091101

Shock(s) and morphology

evidence for shock at bubble edges (from ROSAT)

> turbulence produced at shock and convected downstream

2nd order Fermi acceleration by large-scale, fast-mode turbulence

Mertsch & Sarkar, PRL 107 (2011) 091101

A first model

Mertsch & Sarkar, PRL 107 (2011) 091101

- Bubbles filled with turbulence
- Acceleration by large-scale fast modes
- Inverse Compton scattering:
 e⁻ + γ_{soft} → γ + e⁻
- Can use steady-state or time-dependent solutions
 Stawarz & Petrosian (2008); Mertsch, JCAP 12 (2011) 10

Open questions

- Steady-state
- Spatial transport
- Inhomogeneous radiation fields

Spatial transport

simplified transport equation:

$$\frac{\partial \psi}{\partial t} = \frac{\partial}{\partial p} \left(-\dot{p} \,\psi + p^2 D_{pp} \frac{\partial}{\partial p} \frac{\psi}{p^2} \right) - \frac{\psi}{\tau}$$

full Fokker-Planck equation:

$$\frac{\partial \psi}{\partial t} = \nabla \cdot \left(K \cdot \nabla \psi - \vec{V} \psi \right) + \frac{\partial}{\partial p} \left(\frac{p}{3} \left(\nabla \cdot \vec{V} \right) \psi \right) + \frac{\partial}{\partial p} \left(-\dot{p} \psi + p^2 D_{pp} \frac{\partial}{\partial p} \frac{\psi}{p^2} \right) - \frac{\psi}{\tau} + Q$$
discontinuous velocity
diffusion & advection
$$\overset{\text{diffusion & advection}}{\overset{\text{diffusion & adve$$

Shock geometry

examples from (M)HD simulations of jets:

Guo & Mathews, ApJ 756 (2012) 181

Yang et al., ApJ 761 (2012) 185

Score card

finite difference code:

- semi-implicit Crank-Nicolson scheme
- 3D: 1 momentum & 2 spatial variables
- cartesian, spherical or toroidal coordinates
- shock in (pseudo-)radial direction

radiation module:

- energy losses: ionisation, Coulomb, Bremsstrahlung, inverse Compton, synchrotron
- inverse Compton on CMB, IR & UV/opt. Porter & Strong, ICRC 2005
- synchrotron emission on B-field

other possible applications:

- solar flares/coronal mass ejection
- solar modulation of Galactic cosmic rays
- supernova remnants
- Galactic propagation of cosmic rays

Setups

<u>advection:</u>

• pseudo-radial

<u>diffusion:</u>

• isotropic everywhere

stochastic acceleration:

homogeneous

- pseudo-radial
- *an*isotropic everywhere

homogeneous

- pseudo-radial
- isotropic in shell
- *an*isotropic in halo and bubble
- enhanced in shell

Setups

<u>advection:</u>

• pseudo-radial

<u>diffusion:</u>

• isotropic everywhere

stochastic acceleration:

homogeneous

- pseudo-radial
- *an*isotropic everywhere

homogeneous

- pseudo-radial
- isotropic in shell
- *an*isotropic in halo and bubble
- enhanced in shell

- -

Setup 2: *an*isotropic diffusion

gamma-rays

b [deg.]

Setups

<u>advection:</u>

• pseudo-radial

<u>diffusion:</u>

• isotropic everywhere

stochastic acceleration:

homogeneous

- pseudo-radial
- *an*isotropic everywhere

homogeneous

- pseudo-radial
- isotropic in shell
- anisotropic in halo and bubble
- enhanced in shell

Setup 3: turbulent shell

Setup 3: turbulent shell

Setup 3: turbulent shell

Summary

Mertsch & Sarkar, PRL 107 (2011) 091101

shock at bubble edge, e.g. from jets large-scale, fast mode or small-scale Alfvénic turbulence energy-dependent distribution such that profile is flat