

Anisotropy in Cosmic-Ray Arrival Directions with Six Years of Data from the IceCube Detector

Frank McNally TeVPA 2016

Outline

- Detector Overview
- Large and Small-Scale Structure
- Energy Transition
 - Energy transition in IceCube
 - IceCube / IceTop overlap

Other Studies

- Solar dipole
- Time-dependence

Summary

IceCube

- Neutrino detector deep in Antarctic ice
- I km³ of instrumented volume
- ▶ 1.5 2.5 km under the surface
- ▶ 86 strings
- 60 Digital Optical Modules (DOMs) per string
- ~125 m spacing

Cosmic Rays in IceCube

- Designed to detect up-going neutrinos
- Sensitive to down-going muons produced by cosmic-ray showers
- Cosmic-ray primaries up to knee
- Rate: ~ 2 kHz (172 million events/day!)
- Limited event information stored in data storage & transfer (DST) format
 - Basic directional fit
 - Number of DOMs hit

ІсеТор

 Air shower array on top of IceCube

▶ 81 stations

- Two tanks per station
- Two DOMs per tank
- Close to shower maximum

Cosmic Rays in IceTop

- Sensitive to electromagnetic component of down-going showers
- Cosmic-ray primary energies knee to ankle
- ▶ Rate: ~20 Hz
- Retains more information per event
 - potentially better energy and angular resolution

Outline

- Detector Overview
- Large and Small-Scale Structure
- Energy Transition
 - Energy transition in IceCube
 - IceCube / IceTop overlap

Other Studies

- Solar dipole
- Time-dependence

Summary

Dataset

- Over 300 billion events in IceCube
- Over 170 million events in IceTop
- Excellent detector uptime!

Configuration	Livetime (days)	Number of Events	
IC59	339.38 (91.7%)	3.579×10^{10}	
IC79	315.76 (92.6%)	4.131×10^{10}	
IC86	343.04 (93.0%)	5.906×10^{10}	
IC86-II	331.92 (94.0%)	$5.630 imes 10^{10}$	
IC86-III	362.20 (97.9%)	$6.214 imes 10^{10}$	
IC86-IV	369.76 (97.8%)	$6.327 imes 10^{10}$	
Total	2062.06 (94.5%)	3.179×10^{11}	
Configuration	Livetime (days)	Number of Events	
Configuration IT59	Livetime (days) 338.25 (91.4%)	Number of Events 2.887×10^7	
Configuration IT59 IT73	Livetime (days) 338.25 (91.4%) 312.66 (91.7%)	Number of Events 2.887×10^7 3.690×10^7	
Configuration IT59 IT73 IT81	Livetime (days) 338.25 (91.4%) 312.66 (91.7%) 343.04 (93.0%)	Number of Events 2.887×10^7 3.690×10^7 3.800×10^7	
Configuration IT59 IT73 IT81 IT81-II	Livetime (days) 338.25 (91.4%) 312.66 (91.7%) 343.04 (93.0%) 332.26 (94.1%)	Number of Events 2.887×10^{7} 3.690×10^{7} 3.800×10^{7} 3.713×10^{7}	
Configuration IT59 IT73 IT81 IT81-II IT81-III	Livetime (days) 338.25 (91.4%) 312.66 (91.7%) 343.04 (93.0%) 332.26 (94.1%) 361.20 (97.6%)	Number of Events 2.887×10^7 3.690×10^7 3.800×10^7 3.713×10^7 3.101×10^7	
Configuration IT59 IT73 IT81 IT81-II IT81-III IT81-III IT81-IV	Livetime (days) 338.25 (91.4%) 312.66 (91.7%) 343.04 (93.0%) 332.26 (94.1%) 361.20 (97.6%) 362.61 (95.9%)	Number of Events 2.887×10^7 3.690×10^7 3.800×10^7 3.713×10^7 3.101×10^7 2.810×10^7	

Anisotropy in IceCube

6 years of data (IC59 – IC86-IV)

3.18 x 10¹¹ events

- Relative intensity (left) and pre-trial statistical significance (right)
- Before (top) and after (bottom) dipole- and quadrupole-subtraction
- Angular smoothing radius of 5°

Advantage of New Dataset

- Finer structure visible at higher significance
- Example:
 - IC59 (top) with 20° smoothing radius vs.
 - IC59—IC86-IV (bottom) with 5° smoothing radius
- Note: structure in new map visible in IC59 map at lower significance

- Power spectrum for 6 years of IceCube data (blue)
- With best-fit dipole and quadrupole moments subtracted (red).
- > Dark/light-gray bands represent isotropic flux at the 68% and 90% C.Ls.

Outline

- Detector Overview
- Large and Small-Scale Structure
- Energy Transition
 - Energy transition in IceCube
 - IceCube / IceTop overlap

Other Studies

- Solar dipole
- Time-dependence

Summary

Energy Separation

- Bin simulation based on hits and reconstructed zenith
- Split into energy bands based on median true energy of cosmic-ray primaries
- Result: bins that overlap but rise in median energy

| |3

- > Strength of dipole decreases up to transition, increases afterward
- Phase transition occurs above 100 TeV
- IceCube (blue) and IceTop (red) data

Outline

- Detector Overview
- Large and Small-Scale Structure
- Energy Transition
 - Energy transition in IceCube
 - IceCube / IceTop overlap
- Other Studies
 - Solar dipole
 - Time-dependence
- Summary

- One-dimensional projection of relative intensity in right ascension
- Sidereal projection not well fit by dipole (or any low-multipole fit)
- Predicted dipole visible in solar time (left)
- Systematic errors estimated from the anti- (top-right) and extended-sidereal (bottom-right) frames

Qualitative:

- ID right ascension for each year of data
- Systematic error bars calculated from anti-sidereal frame

Time Dependence – Large Scale

Quantitative:

• Calculate chi-squared by comparing each year to the collected sample

Configuration	χ^2	Ν	p-value
IC59	31.42	23	0.11
IC79	16.12	23	0.85
IC86	19.66	23	0.66
IC86-II	15.44	23	0.88
IC86-III	24.27	23	0.39
IC86-IV	18.16	23	0.75

Notes. The table provides χ^2 values, number of degrees of freedom, N, and corresponding p-values.

Time Dependence – Small Scale

	Region	Right Ascension (deg)	Declination (deg)	Peak Significance
Label regions with pre-trial	1a	$142.5^{+4.9}_{-2.4}$	$-49.7^{+2.3}_{-3.9}$	11.0σ
significance > 5 σ	1b	$110.5\substack{+5.3\\-3.5}$	$-55.9\substack{+5.4\\-2.3}$	6.9σ
	2	$261.0^{+3.4}_{-8.5}$	$-48.9^{+4.7}_{-2.3}$	11.4σ
 Look at evolution over time 	3	$200.4\substack{+2.8\\-1.4}$	$-38.7^{+2.3}_{-2.3}$	10.8σ
	4	$327.9\substack{+11.9\\-16.8}$	$-74.6\substack{+4.4\\-4.4}$	11.0σ
	5	$215.6^{+18.7}_{-8.6}$	$-72.4\substack{+5.2\\-2.2}$	-9.3σ
	6	$74.5^{+4.2}_{-4.2}$	$-36.4\substack{+5.0\\-3.8}$	-10.3σ
360° 0°	7a	$317.1^{+4.2}_{-2.1}$	$-38.7^{+5.2}_{-1.5}$	-7.2σ
	7b	$292.5^{+1.4}_{-1.4}$	$-41.0^{+1.6}_{-1.6}$	-9.6σ
	8	$164.7\substack{+3.2\\-2.9}$	$-48.1\substack{+4.7\\-3.9}$	-11.9σ
-12 -10 -75 -5 -25 0 25 5 75 10	9 *	$94.1\substack{+9.4 \\ -40.9}$	$-82.0\substack{+5.1\\-2.2}$	-7.9σ
Significance $[\sigma]$	10*	$27.4\substack{+4.9 \\ -1.4}$	$-27.3^{+3.3}_{-2.0}$	10.6σ

Time Dependence – Small Scale

Summary

- With over 300 billion cosmic ray events, IceCube can study anisotropies in the cosmicray arrival direction distribution in the southern hemisphere at less than the part-permille level.
- IceCube has found both large and small-scale anisotropies in cosmic ray arrival directions at a median energy of 20 TeV.
- At higher energies, IceCube and IceTop data show significant anisotropy that is substantially different from the anisotropy at 20 TeV, with IceCube data indicating the transition occurs around 100 TeV.
- No time dependence observed over the six year period in large- or small-scale structures.
- In the near future, we hope to use the superior energy resolution of IceTop to learn more about the location of Galactic cosmic ray sources, diffusion, Galactic magnetic fields, and other related topics.

Table of Contents

- Detector Overview
- Large and Small-Scale
 Structure
- Energy Transition
 - Energy transition in IceCube
 - IceCube / IceTop overlap
- Other Studies
 - Solar dipole
 - Time-dependence

Summary

Backup Slides

Polar Maps

 Relative intensity (left) and significance (right) for large (top) and small-scale (bottom) structure

Solar Dipole

Frank McNally -- Carleton College

IceCube Preliminary

36