Constraining the production of cosmic rays by pulsars

Mikhail Ivanov
EPFL & MSU & INR

w/ M. Pshirkov and G. Rubtsov PRD, arXiv:1606.01480

TeVPA, CERN 12th September 2016

Hadronic Cosmic Rays

Required luminosity of CR sources: $L \simeq 10^{41} \ \mathrm{erg/s}$

Proven to be produced in supernova remnants (SNR W44, IC 433)

Some issues remain unsolved: not clear if enough, observed spectra are softer than theoretical etc.

Other sources also possible (superbubbles, pulsars)

Ackermann et al'11

Neronov, Semikoz (1201.1660)

$$L \simeq 10^{41} \frac{\text{erg}}{\text{s}} \left[\frac{\mathcal{E}_{CR}^{tot}}{2 \times 10^{50} \text{ erg}} \right] \left[\frac{\mathcal{R}_{SN}}{1/50 \text{ yr}^{-1}} \right]$$

$$E_{rot} = \frac{I_{NS}\Omega^2}{2} \simeq 2 \times 10^{50} \operatorname{erg} \left[\frac{I_{NS}}{10^{45} \operatorname{gcm}^2} \right] \left[\frac{10 \operatorname{ms}}{P_{ini}} \right]^2$$

Pulsars

May have enough initial rotation energy

Are well-established sources of e+e- CRs; theory predicts that ions have even bigger energy

Hoshino, Gallant, Arons et al'92-94

Hard to extract the hadronic flux

There should be large (~100 pc) diffusive gamma-ray halos around young pulsars

Neronov and Semikoz (1201.1660): blind search for gamma-ray halos => pulsars +, SNR -

Diffusive gamma-ray halos

Size:

$$r_{CR} \simeq 2\sqrt{DT_{SD}}$$

$$D = D_{28} \times 10^{28} \left[\frac{E_{CR}}{3 \text{ GeV}} \right]^{\delta} \text{ cm}^2/\text{s},$$

$$\delta = 0.4 \pm 0.1$$
,

$$r_{CR} \simeq 120 \times D_{28}^{1/2} \left[\frac{T_{SD}}{10 \text{ kyr}} \right]^{1/2} \left[\frac{E_{CR}}{1 \text{ TeV}} \right]^{0.2} \text{ pc}$$

this picture may or may not

 $\sim 1 \text{ TeV in CRs}$

Luminosity:
$$L_{\gamma}^{E_{\gamma} \gtrsim 1 \text{ GeV}} \sim \kappa \frac{\mathcal{E}_{CR}^{halo}}{t_{int}}$$

$$\simeq 4 \times 10^{34} \left[\frac{\kappa}{0.2} \right] \left[\frac{\mathcal{E}_{CR}^{halo}}{2 \times 10^{50} \text{ erg}} \right] \left[\frac{n_{ISM}}{1 \text{ cm}^{-3}} \right] \frac{\text{erg}}{\text{s}}$$

Pulsar sample

Young and close

$$T_{SD} < 30 \text{ kyr}, \quad r_s < 5 \text{ kpc}$$

Away from the Galactic plane and center

$$15^{\circ} < l < 345^{\circ}, \quad |b| > 1^{\circ}$$

Pulsar sample

	PSRJ	l	b	r_s , kpc	T_{SD} , kyr	\dot{E} , erg/s	P, s
1	J0007+7303	119.66	10.46	1.40	13.9	4.5×10^{35}	0.32
2	J0501+4516	161.55	1.95	2.20	15.7	1.2×10^{33}	5.8
3	J1709-4429	343.10	-2.69	2.60	17.5	3.4×10^{36}	0.10
4	J2229+6114	106.65	2.95	3.00	10.5	2.2×10^{36}	0.052
5	J0205+6449	130.72	3.08	3.20	5.37	2.7×10^{37}	0.065
6	J1357-6429	309.92	-2.51	4.09	7.31	3.1×10^{36}	0.17
7	J0534+2200	184.56	-5.78	2.00	1.26	4.5×10^{38}	0.033
8	J1513-5908	320.32	-1.16	4.40	1.56	1.7×10^{37}	0.15

Credits: ATNF

Method

7 year Fermi-LAT data and Ferm-LAT software

For each pulsar:

- Take all known 3FGL sources within 10° but allow their parameters to vary during $\it gtlike$ (likelihood optimization routine)
- Add to the source model uniformly bright round halo with a desired radius $0.1^{\circ}-5^{\circ}$ with a power-law spectrum
- Split the data into 3 energy bins (the size is different!)
 - I 10 GeV, 10 100 GeV, and 100 500 GeV
- gtlike it and check out the fit
- Study the distribution of Test Statistics

$$TS = -2\ln\frac{L_{max,0}}{L_{max,1}}$$

no halo

n.b. Rule of thumb: $\# \text{ of } \sigma \approx \sqrt{TS}$

Simulations

Input a halo - Simulate with gtobssim - Analyze like real data

Simulations: TS (flux) scaling

best fits:

$$TS_{1-10} \simeq 100 \left[\frac{F^{1-10 \text{ GeV}}}{4.6 \times 10^{-9} \text{ ph/cm}^2 \text{s}} \right]^{b_1},$$

$$b_1 = 1.54 \pm 0.06,$$

$$TS_{10-100} \simeq 100 \left[\frac{F^{10-100 \text{ GeV}}}{5.7 \times 10^{-10} \text{ ph/cm}^2 \text{s}} \right]^{b_2},$$

$$b_2 = 1.42 \pm 0.14,$$

$$TS_{100-500} \simeq 100 \left[\frac{F^{100-500 \text{ GeV}}}{2.4 \times 10^{-10} \text{ ph/cm}^2 \text{s}} \right]^{b_3},$$

$$b_3 = 1.33 \pm 0.10.$$

a halo with a given flux yields detection @ which TS?

Results

PSR J0007+7307

$\sim 10\sigma$ detection of I-degree halo

There are already PWN and SNR around this pulsar

but might also be a halo!
one has to disentangle
between other sources there

$$L_{\gamma}^{E_{\gamma} \ge 1 \text{ GeV}} \simeq 3.0 \times 10^{33} \text{erg/s}.$$

$$\mathcal{E}_{CR}^{halo} \sim (2-4) \times 10^{50} \text{ erg.}$$

$$F^{1-10~{\rm GeV}} = (3.53 \pm 0.23) \times 10^{-9}~{\rm photons/cm^2s}$$
,
 $\Gamma = 2.798 \pm 0.081$.

Preliminary PSR J0007+7307 x-rays ROSAT~ gamma - rays Fermi radio 0:00:00.0 05:00.0 GB6 10:00.0 15:00.0 update in progress...

CO distr.

VERITAS, TeV

1107.4151

1603.09328

Constraints

No halo seen for other pulsars

Nonobservation of halos:

$$TS_{1-10} < 50$$

$$\Longrightarrow$$

$$F^{1-10 \text{ GeV}} < 3.0 \times 10^{-9} \text{ ph/cm}^2 \text{s}$$

$$L_{\gamma}^{halo} \lesssim (1-2) \times 10^{34} \text{ erg/s}$$

Discussion

$$\frac{\mathcal{E}_{CR}^{halo}}{2 \times 10^{50} \text{ erg}} \simeq \begin{bmatrix} L_{\gamma}^{halo} \\ 2 \times 10^{34} \text{ erg/s} \end{bmatrix} \begin{bmatrix} 1 \text{ cm}^{-3} \\ n_{ISM} \end{bmatrix}$$

Nonobservation of halos (fixed ISM density):

$$L_{\gamma}^{halo} \lesssim (1-2) \times 10^{34} \text{ erg/s}$$

$$\mathcal{E}_{CR}^{halo} \lesssim (0.5-1) \times 10^{50} \text{ erg}$$

Degeneracy with ISM density:

$$n_{ISM} \simeq 0.3 \div 1 \text{ cm}^{-3}$$

$$\mathcal{E}_{CR}^{halo} \lesssim (0.5 - 3) \times 10^{50} \text{ erg}$$

we need to explain all CRs with pulsars (scatter = uncertainty in birthrates: I per 30-120 yr)

Conclusions:

Pulsars might be sources of hadronic CRs: diffusive gamma-ray halos to test this scenario

One candidate is found, thorough study required

Apart from that, no definitive diffusive gamma-ray halos were found

Bounds on luminosity bounds on CR flux

Pulsars are pinned down as main CR factories (not completely ruled out though! beware of degeneracies and uncertainties)

Thank you for your attention!

Backup slides

Why only above I GeV?

I) @ I GeV the two coincide

$$R_{SNR} = \frac{r_{SNR}}{r_s} \simeq 0.1^{\circ} \left[\frac{5 \text{kpc}}{r_s} \right] \left[\frac{t}{10 \text{ kyr}} \right]^{0.4}$$
$$\times \left[\frac{\mathcal{E}_{SN}}{10^{51} \text{erg}} \right]^{0.2} \left[\frac{1 \text{ cm}^{-3}}{n_{ISM}} \right]^{0.2}$$

$$F \simeq 0.1^{\circ} \left[\frac{5 \text{kpc}}{r_s} \right] \left[\frac{t}{10 \text{ kyr}} \right]^{0.4} \qquad R_{halo} = \frac{r_{CR}}{r_s}$$

$$\times \left[\frac{\mathcal{E}_{SN}}{10^{51} \text{erg}} \right]^{0.2} \left[\frac{1 \text{ cm}^{-3}}{n_{ISM}} \right]^{0.2} \qquad \simeq 1.4^{\circ} D_{28}^{1/2} \left[\frac{5 \text{ kpc}}{r_s} \right] \left[\frac{T_{SD}}{10 \text{ kyr}} \right]^{1/2} \left[\frac{E_{\gamma}}{200 \text{ GeV}} \right]^{0.2}$$

2) LAT PSF is big: localization capability reduced

Supernova example

SNR G160.4 + 02.8

Pulsar sample

	PSRJ	l	b	r_s , kpc	T_{SD} , kyr	\dot{E} , erg/s	P, s
1	J0007+7303	119.66	10.46	1.40	13.9	4.5×10^{35}	0.32
2	J0501+4516	161.55	1.95	2.20	15.7	1.2×10^{33}	5.8
3	J1709-4429	343.10	-2.69	2.60	17.5	3.4×10^{36}	0.10
4	J2229+6114	106.65	2.95	3.00	10.5	2.2×10^{36}	0.052
5	J0205+6449	130.72	3.08	3.20	5.37	2.7×10^{37}	0.065
6	J1357-6429	309.92	-2.51	4.09	7.31	3.1×10^{36}	0.17
7	J0534+2200	184.56	-5.78	2.00	1.26	4.5×10^{38}	0.033
8	J1513-5908	320.32	-1.16	4.40	1.56	1.7×10^{37}	0.15

	PSRJ	$R_{halo}(1 \text{ GeV})$	$R_{halo}(10 \text{ GeV})$	$R_{halo}(100 \text{ GeV})$
1	J0007+7303	2.0°	3.2°	5.0°
2	J0501+4516	1.4°	2.2°	3.5°
3	J1709-4429	1.2°	2.0°	3.1°
$\boxed{4}$	J2229+6114	0.8°	1.3°	2.1°
5	J0205+6449	0.6°	0.9°	1.4°
6	J1357-6429	0.5°	0.8°	1.3°
7	J0534+2200	0.4°	0.7°	1.1°
8	J1513-5908	0.2°	0.4°	0.6°

Results

Results

PSR J0007+7307

x-rays ROSAT gamma-rays Fermi radio GB6

1603.09328 **VERITAS**, TeV CO distr.