Experimental searches for axions

Igor G. Irastorza
Universidad de Zaragoza
TeV Particle Astrophysics (TeVPA2016), CERN,
12 September 2016
Axions: theory motivation

- Peccei-Quinn solution to the strong CP problem or why QCD seems not to violate CP, while one would expect to do so
- New U(1) symmetry introduced in the SM: Peccei Quinn symmetry of scale f_a
- The AXION appears as the Nambu-Goldstone boson of the spontaneous breaking of the PQ symmetry

This QCD term is CP violating.

$$\mathcal{L}_{CP} = \theta \frac{\alpha_s}{8\pi} G \tilde{G}$$

Experimentally $\theta < 10^{-11}$ while O(1) would be expected

θ absorbed in the definition of a

$$\theta = \frac{\alpha_s}{8\pi f_a} \frac{aG\tilde{G}}{f_a}$$

$\theta = \frac{a}{f_a}$ relaxes to zero...

CP conservation is preserved “dynamically”

$a \rightarrow$ New field: the axion. Very light:

$$m_a \simeq 0.6 \text{ eV} \frac{10^7 \text{GeV}}{f_a}$$
Axion phenomenology

- **Axion-photon coupling present in every model.**

\[\mathcal{L}_{a\gamma} = g_{a\gamma\gamma}(E \cdot B)a \quad g_{a\gamma\gamma} = \frac{\alpha_s}{2\pi f_a} \left(\frac{E}{N} - 1.92 \right) \]

- **Axion-photon conversion** in the presence of an electromagnetic field (Primakoff effect)

This is probably the most relevant of axion properties.
Most axion detection strategies are based on the axion-photon coupling
Beyond axions

- Many extensions of SM predict axion-like particles
 - Higher scale symmetry breaking

Generic ALPs parameter space

Weakly Interacting Sub-eV Particles (WISPs)

Axion Like particles (ALPs)

- Stringy ALPs
- Arion
- Majoron
- Familon

AXIONS

- Hidden Photons (HPs)
- Millicharged Particles
- Chameleons

String theory predicts a plenitude of ALPs
Non thermal cosmological axions

Axion realignment

As the Universe cools down below T_{QCD}, space is filled with low energy axion field fluctuations. Their density depends on the initial value of $\langle a_{phys} \rangle$ ("misalignment angle")

But also... topological defects

But inflation may "wipe out" topological defects... Did inflation happen before or after the creation of defects (PQ transition) ? pre-inflation or post-inflation scenarios
Axion/ALP parameter space

Laboratory experiments (ALPS)

Helioscopes (CAST)

Telescopes

Haloscopes

ALP

Axion as CDM

Pre-inflation models

Anthropic

m_{axion}(eV)

m_{axion}(eV)
Axion/ALP parameter space

- Laboratory experiments (ALPS)
- Helioscopes (CAST)
- Haloscopes
- Telescopes
- Axion as CDM

- HESS
- Transp. Joint
- ADMX
- KSNZ
- Subdominant
- Post-inflation

g_{ay} (GeV$^{-1}$)

m_{axion} (eV)
Axion/ALP parameter space

Laboratory experiments (ALPS)

Helioscopes (CAST)

HALP

Halosopes

HoDM

Post-inflation (N_{ewf}>1)

WISPy CDM

JCAP06(2012)013
Astrophysical hints for axions

- Gama ray telescopes like MAGIC or HESS observe HE photons from very distant sources...

\[g_{a\gamma} \sim 10^{-12} - 10^{-10} \text{ GeV}^{-1} \]
\[m_a \lesssim 10^{-(10-7)} \text{ eV} \]
Astrophysical hints for axions (II)

- Most stellar systems seem to cool down faster than expected.
- Presence of axions/ALPs offer a good joint explanation (Giannotti et al. JCAP05(2016)057 [arXiv:1512.08108])
- Parameters at reach of IAXO
Axion/ALP parameter space

Transparency of the Universe

Helioscopes (CAST)

Laboratory experiments (ALPS)

Stellar cooling hints

ALP

HESI

TeVeS

ADMX

KSVZ

Stellar cooling hints

HB stars

TeVeS 2016, CERN

Igor G. Irastorza / Universidad de Zaragoza
Axion motivation in a nutshell

• Most compelling solution to the Strong CP problem of the SM

• Axion-like particles (ALPs) predicted by many extensions of the SM (e.g. string theory)

• Axions, like WIMPs, may solve the DM problem for free. (i.e. not ad hoc solution to DM)

• Astrophysical hints for axion/ALPs?
 – Transparency of the Universe to UHE gammas
 – Stellar anomalous cooling \(g_{a\gamma} \sim \text{few } 10^{-11} \text{ GeV}^{-1} / m_a \sim \text{few } \text{meV} \) ?

• Relevant axion/ALP parameter space at reach of current and near-future experiments

• Still too little experimental efforts devoted to axions when compared e.g. to WIMPs…
Detection of axions

- Axion – photon coupling \textit{generically} present in every axion model.

- \textbf{Axion-photon conversion} in the presence of an electromagnetic field (\textit{Primakoff effect})

- Most detection techniques based on the axion-to-photon conversion inside magnets

 - Other couplings possible, but less generic (model dependent)
 - axion-electron coupling
 - axion-nucleon coupling
Detection of axions

<table>
<thead>
<tr>
<th>Source</th>
<th>Experiments</th>
<th>Model & Cosmology dependency</th>
<th>Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relic axions</td>
<td>ADMX, X3, CASPER, CAPP, ...</td>
<td>High</td>
<td>New ideas emerging, Active R&D going on,...</td>
</tr>
<tr>
<td>Lab axions</td>
<td>ALPS, OSQAR, fifth force exps,...</td>
<td>Very low</td>
<td></td>
</tr>
<tr>
<td>Solar axions</td>
<td>SUMICO, CAST, IAXO</td>
<td>Low</td>
<td>Ready for large scale experiment</td>
</tr>
</tbody>
</table>
Detecting DM axions: “haloscopes”

- Assumption: DM is mostly axions
- Resonant cavities (Sikivie, 1983)
 - Primakoff conversion inside a “tunable” resonant cavity
 - Energy of photon = $m_a c^2 + O(b^2)$

Primakoff conversion of DM axions into microwave photons inside cavity

$$P_0 = g_{a\gamma}^2 V B^2 C \frac{\rho_a}{m_a} Q$$

Axion DM field
Non-relativistic
Frequency \leftrightarrow axion mass

Cavity dimensions smaller than de Broglie wavelength of axions

If cavity tuned to the axion frequency, conversion is “boosted” by resonant factor (Q quality factor)
ADMX

- Leading haloscope experiment
- Many years of R&D
- high Q cavity (1 m x 60 cm Ø)
- 8 T superconducting solenoid
- Low noise receivers based on SQUIDs + dilution refrigeration at 100 mK.
- Sensitivity to few μeV proven
- Good support through Gen 2 DM US program
- Current program will surely cover 1-10 μeV with high sensitivity (i.e. reaching ever pessimistic coupling). What about higher masses?
Haloscopes at higher axion masses

- Problematic: higher $m_a \rightarrow$ lower $V \rightarrow$ lower sensitivity
- Active R&D inside ADMX
- X3 (before ADMX-HF)
- CAPP in Korea \rightarrow very important effort
 - CULTASK & others...
- CAST as haloscope: CAST-CAPP, RADES.

Also...
- Dish antennas
- CASPER
Beyond haloscopes...

- **Dish antennas:**
 - No resonance, but large area possible...
 - Realistic sensitivity limited, but boost possible with dielectric multilayer
 - Directionality possible

Horns et al. JCAP 1304 (2013) 016
Jaeckel, Redondo JCAP 1311 (2013)

MADMAX Prototype setup at MPI Munich

ORPHEUS in Seattle

Plot from Ballesteros et al 1608.05414

\[
P \sim |E|^2 A_{\text{dish}} \sim 10^{-26} \left(\frac{B}{5T} \frac{c_\gamma}{2} \right)^2 \frac{A_{\text{dish}}}{1 \text{ m}^2} \text{ Watt}
\]
Beyond haloscopes…

- DM-induced spin precession?: CASPEr experiment (Mainz-Berkeley)
- Competitive at very low m_a

- Also QUAX experiment (Padova):
 - Sensitive to “axion DM wind” through axion-electron coupling

\[
\frac{a}{f_a} G_{\mu\nu} \tilde{G}^{\mu\nu}
\]
Coupling to gluon field CASPEr Electric

\[
\frac{\partial_{\mu} a}{f_a} \bar{\Psi}_f \gamma^\mu \gamma_5 \Psi_f
\]
Coupling to fermions CASPEr Wind

Light shining through wall

Standard configuration \(\rightarrow \)

Enhanced “resonant” configuration (future) \(\rightarrow \)

ALPS @ DESY-Hamburg

Any Light Particle Search @ DESY: ALPS I concluded in 2010

- ALP II under preparation
- (resonant, 10+10 magnets,...)
- Also: OSQAR@CERN, CROWS@CERN, PVLAS @ Ferrara, GammeV & REAPR @ Fermilab, US, BMV @ Toulouse

<table>
<thead>
<tr>
<th>parameter</th>
<th>scaling</th>
<th>ALPS I</th>
<th>ALPS IIc</th>
<th>sens. gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B L$ (total)</td>
<td>$g_{ay} \propto (B L)^{-1}$</td>
<td>22 Tm</td>
<td>468 Tm</td>
<td>21</td>
</tr>
<tr>
<td>PC built up ($P_{laser,eff}$)</td>
<td>$g_{ay} \propto P_{RC}^{-1/4}$</td>
<td>1 (kW)</td>
<td>150 (kW)</td>
<td>3.5</td>
</tr>
<tr>
<td>rel. photon flux n_{prod}</td>
<td>$g_{ay} \propto n_{prod}^{-1/4}$</td>
<td>1 (532 nm)</td>
<td>2 (1064 nm)</td>
<td>1.2</td>
</tr>
<tr>
<td>RC built up β_{RC}</td>
<td>$g_{ay} \propto \beta_{RC}^{-1/4}$</td>
<td>1</td>
<td>40,000</td>
<td>14</td>
</tr>
<tr>
<td>detector eff. DE</td>
<td>$g_{ay} \propto DE^{-1/4}$</td>
<td>0.9</td>
<td>0.75</td>
<td>0.96</td>
</tr>
<tr>
<td>detector noise DC</td>
<td>$g_{ay} \propto DC^{1/8}$</td>
<td>$1.8 \cdot 10^{-3}$ s$^{-1}$</td>
<td>10^{-6} s$^{-1}$</td>
<td>2.6</td>
</tr>
<tr>
<td>combined</td>
<td></td>
<td></td>
<td></td>
<td>3082</td>
</tr>
</tbody>
</table>
Axion-mediated macroscopic forces

Axions could be detected as short-range deviation of gravity…
(but traditionally though without enough sensitivity to QCD axions)

Recently proposed: ARIADNE experiment
Short-range force by NMR technique

Good prospects for sub-meV axion

Arvanitaki, Geraci
Solar Axions

- Solar axions produced by photon-to-axion conversion of the solar plasma photons in the solar core

\[\frac{d\Phi_a}{dE} = 6.02 \times 10^{10} \text{ cm}^{-2} \text{ s}^{-1} \text{ keV}^{-1} g_{10}^2 E^{2.481} e^{-E/1.205} \]

\[g_{10} = g_{a\gamma}/10^{-10} \text{ GeV}^{-1} \]

van Bibber PRD 39 (89)
CAST JCAP 04(2007)010
Solar Axions

- In addition to Primakoff, “ABC axions” may be x100 more intense… but model-dependent.

* if the axion couples with the electron (g_{ae}) *(non hadronic axion)*

Non-hadronic “ABC” Solar axion flux at Earth

JCAP 1312 008
Axion helioscopes

Axion helioscope concept
P. Sikivie, 1983
(use of buffer gas)

\[
P_{\alpha\gamma} = 2.6 \times 10^{-17} \left(\frac{B}{10 \text{ T}} \right)^2 \left(\frac{L}{10 \text{ m}} \right)^2 \left(g_{\alpha\gamma} \times 10^{10} \text{ GeV} \right)^2 \mathcal{F}
\]
Buffer gas for higher masses

Coherence condition ($qL \ll 1$) is recovered for a narrow mass range around m_γ

$$|q| = \frac{m_a^2 - m_\gamma^2}{2E}$$

$$m_\gamma \approx \sqrt{\frac{4\pi\alpha N_e}{m_e}} = 28.9 \sqrt{\frac{Z}{A}} \rho \text{ eV}$$

N$_e$: number of electrons/cm3
ρ : gas density (g/cm3)

Igor G. Irastorza / Universidad de Zaragoza
Other types of helioscope

• Instead of magnetic field, one can use the electromagnetic field of crystals…

• "Primakoff-Bragg" effect

• WIMP-like experiments provide limit to axions: SOLAX, COSME, DAMA, EDELWEISS, CDMS, etc…

• Characteristical temporal pattern:

"
Other types of helioscope

- «TPC in a magnetic field»: conversion and absorption happening in the gas
- Competitive only for high axion mass
- Old idea recently studied

Galán et al., arXiv:1508.03006
CAST experiment @ CERN

- Decommissioned LHC test magnet (L=10m, B=9 T)
- Moving platform $\pm 8^\circ V \pm 40^\circ H$ (to allow up to 50 days / year of alignment)
- 4 magnet bores to look for X rays
- 3 X rays detector prototypes being used.
- X ray Focusing System to increase signal/noise ratio.
CAST results

<table>
<thead>
<tr>
<th>Year</th>
<th>Description</th>
</tr>
</thead>
</table>
| 2003 – 2004 | **CAST phase I**
 - vacuum in the magnet bores |
| 2006 | **CAST phase II - \(^4\)He Run**
 - axion masses explored up to 0.39 eV (160 P-steps) |
| 2007 | **\(^3\)He Gas system implementation** |
| 2008 - 2011 | **CAST phase II - \(^3\)He Run**
 - axion masses explored up to 1.17 eV
 - bridging the dark matter limit |
| 2012 | **Revisit \(^4\)He Run with improved detectors** |
| 2013-2015 | **Revisit vacuum phase with improved detectors**
 - Analysis ongoing.
 - New result soon available |

*TeVPA 2016, CERN
Igor G. Irastorza / Universidad de Zaragoza*
IAXO – Concept

$4^4 g_{a\gamma} \propto b^{1/2} \varepsilon^{-1} \times a^{1/2} \varepsilon_o^{-1} \times (BL)^{-2} A^{-1} \times t^{-1/2}$

4+ orders of magnitude better SNR that CAST (JCAP 1106:013)
IAXO – Conceptual Design

- Large toroidal 8-coil magnet $L = \sim 20$ m
- 8 bores: 600 mm diameter each
- 8 x-ray telescopes + 8 detection systems
- Rotating platform with services
IAXO technologies – Baseline

IAXO magnet
- Superconducting “detector” magnet.
- Toroidal geometry (8 coils)
- Based on ATLAS toroid technical solutions.
- CERN+CEA expertise
- 8 bores / 20 m long / 60 cm Ø per bore

IAXO magnet
- Slumped glass technology with multilayers
- Cost-effective to cover large areas
- Based on NuSTAR developments
- Focal length ~5 m
- 60-70% efficiency
- LLNL+UC+DTU+MIT expertise

IAXO detectors
- Micromegas gaseous detectors
- Radiopure components + shielding
- Discrimination from event topology in gas
- Long trajectory in CAST
- Zaragoza + CEA (+ others) expertise
- Also considered: Ingrid, MMCs, CCDs

Baseline developed at:
IAXO Letter of Intent: CERN-SPSC-2013-022

TeVPA 2016, CERN

Igor G. Irastorza / Universidad de Zaragoza
Few meV scale QCD axion accessible to IAXO

Transparency ALP hints accessible to IAXO & ALPS-II

1-10 μeV axionDM accessible to ADMX

ALPS-II

Laboratory experiments (ALPS)

Haloscopes (CAST)

ADM

KSVZ

ALP CDM

TeVPA

Igor G. Irastorza / Universidad de Zaragoza

36
Few meV scale QCD axion accessible to IAXO

Transparency ALP hints accessible to IAXO & ALPS-II

ALPS-II

IAXO

Haloscopes (CAST)

1-10 μeV axionDM accessible to ADMX

10^{-13} 10^{-12} 10^{-11} 10^{-10} 10^{-9} 10^{-8} 10^{-7} 10^{-6} 10^{-5} 10^{-4} 10^{-3} 10^{-2} 10^{-1} 1 10 10^{-8} 10^{-7} 10^{-6} 10^{-5} 10^{-4} 10^{-3} 10^{-2} 10^{-1} 1 10 m_{\text{axion}}(eV)

Oscillating EDM

ALP CDM

R&D permitting

Dish antennas? NMR?

HF cavities?

KSVZ

Laboratory experiments (ALPS)
Conclusions

- Increasing interest for axions:
 - Beyond axions: ALPs / WISPs
- Increasing experimental effort (still small!)
- Consolidation of classical detection lines: ADMX, CAST, ALPs,…
 - ADMX and CAST have firstly probed interesting (small) fraction of par space.
- Helioscopes: IAXO next generation
- Haloscopes: ADMX, CAPP → R&D to go higher m_a
- New ideas to tackle new regions: Dish antenna, dielectric layers, NMR,…
- Large fraction of parameter space at reach of near-future experiments
 - chances of discovery!

 Good timing for axions… stay tuned
Backup slides...
Axions: theory motivation

• Axion: introduced to solve the strong CP problem

• In QCD, nothing prevents from introducing a term like:

\[\mathcal{L}_{CP} = \theta \frac{\alpha_s}{8\pi} G \tilde{G} \]

This term is CP violating.

\[\theta = \bar{\theta} + \arg \det M \]

From non-observation of neutron electric dipole moment:

\[|\theta| < 0.7 \times 10^{-11} \]

• Why so small?

• High fine-tunning required for this to work in the SM
Axions: theory motivation

- Peccei-Quinn solution to the strong CP problem or why QCD seems not to violate CP, while one would expect to do so
- New U(1) symmetry introduced in the SM: Peccei Quinn symmetry of scale f_a
- The AXION appears as the Nambu-Goldstone boson of the spontaneous breaking of the PQ symmetry

\[
\mathcal{L}_a = \frac{1}{2} (\partial_\mu a)^2 - \frac{\alpha_s}{8\pi f_a} aG\tilde{G}
\]

θ absorbed in the definition of a

θ = a/f_a relaxes to zero… CP conservation is preserved “dynamically”
The axion

- The PQ scenario solves the strong CP-problem. But a most interesting consequence is the appearance of this new particle, the *axion*.

 (Weinberg, Wilcek)

- **Basic properties:**
 - Pseudoscalar particle
 - Neutral
 - Gets very small mass through mixing with pions
 - Stable (for practical purposes)
 - Phenomenology driven by the PQ scale f_a.
 (couplings inversely proportional to f_a)

\[\mathcal{L}_a = \frac{1}{2} (\partial_\mu a)^2 - \frac{\alpha_s}{8\pi f_a} a G \tilde{G} \]

\[m_a \approx 0.6 \text{ eV} \frac{10^7 \text{GeV}}{f_a} \]
OSQAR @ CERN

Also:

- GammeV & REAPR @ Fermilab, US
- BMV @ Toulouse
- PVLAS @ Ferrara
- CROWS @ CERN
- ...
Axion Helioscopes

• Previous helioscopes:
 – First implementation at Brookhaven (just few hours of data) [Lazarus et at. PRL 69 (92)]
 – TOKYO Helioscope (SUMICO): 2.3 m long 4 T magnet

• Presently running:
 – CERN Axion Solar Telescope (CAST)
IAXO magnet

TOROIDAL CONFIGURATION specifically built for axion physics

Each conversion bore (between coils) 600 mm diameter

Magnetic length 20 m Total cryostat length 25 m
IAXO magnet concept presented in:

IAXO magnet

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cryostat dimensions:</td>
<td>Overall length (m)</td>
</tr>
<tr>
<td></td>
<td>Outer diameter (m)</td>
</tr>
<tr>
<td></td>
<td>Cryostat volume (m³)</td>
</tr>
<tr>
<td>Toroid size:</td>
<td>Inner radius, (R_{in}) (m)</td>
</tr>
<tr>
<td></td>
<td>Outer radius, (R_{out}) (m)</td>
</tr>
<tr>
<td></td>
<td>Inner axial length (m)</td>
</tr>
<tr>
<td></td>
<td>Outer axial length (m)</td>
</tr>
<tr>
<td>Mass:</td>
<td>Conductor (tons)</td>
</tr>
<tr>
<td></td>
<td>Cold Mass (tons)</td>
</tr>
<tr>
<td></td>
<td>Cryostat (tons)</td>
</tr>
<tr>
<td></td>
<td>Total assembly (tons)</td>
</tr>
<tr>
<td>Coils:</td>
<td>Number of racetrack coils</td>
</tr>
<tr>
<td></td>
<td>Winding pack width (mm)</td>
</tr>
<tr>
<td></td>
<td>Winding pack height (mm)</td>
</tr>
<tr>
<td></td>
<td>Turns/coil</td>
</tr>
<tr>
<td></td>
<td>Nominal current, (I_{op}) (kA)</td>
</tr>
<tr>
<td></td>
<td>Stored energy, (E) (MJ)</td>
</tr>
<tr>
<td></td>
<td>Inductance (H)</td>
</tr>
<tr>
<td></td>
<td>Peak magnetic field, (B_p) (T)</td>
</tr>
<tr>
<td></td>
<td>Average field in the bores (T)</td>
</tr>
<tr>
<td>Conductor:</td>
<td>Overall size (mm²)</td>
</tr>
<tr>
<td></td>
<td>Number of strands</td>
</tr>
<tr>
<td></td>
<td>Strand diameter (mm)</td>
</tr>
<tr>
<td></td>
<td>Critical current @ 5 T, (I_c) (kA)</td>
</tr>
<tr>
<td></td>
<td>Operating temperature, (T_{op}) (K)</td>
</tr>
<tr>
<td></td>
<td>Operational margin</td>
</tr>
<tr>
<td></td>
<td>Temperature margin @ 5.4 T (K)</td>
</tr>
<tr>
<td></td>
<td>at 4.5 K (W)</td>
</tr>
<tr>
<td></td>
<td>at 60-80 K (kW)</td>
</tr>
</tbody>
</table>
IAXO x-ray optics

- X-rays are focused by means of grazing angle reflection (usually 2)
- Many techniques developed in the x-ray astronomy field. But usually costly due to exquisite imaging requirements
IAXO x-ray optics

- Each bore equipped with an x-ray optics
- Exquisite imaging not required
- BUT need cost-effective way to build 8 (+1 spare) optics of 600 mm diameter each
IAXO x-ray optics

- Technique of choice for IAXO: optics made of slumped glass substrates coated to enhance reflectivity in the energy regions for axions
- Same technique successfully used in NuSTAR mission, recently launched

- The specialized tooling to shape the substrates and assemble the optics is now available
- Hardware can be easily configured to make optics with a variety of designs and sizes
- Key institutions in NuSTAR optics: LLNL, U. Columbia, DTU Denmark. All in IAXO!
IAXO low background detectors
Optics+detector pathfinder system in CAST

- IAXO optics+detector joint system
 - Newly designed MM detector (following IAXO CDR)
 - New x-ray optics fabricated following technique proposed for IAXO (but much smaller, adapted to CAST bore)
 - First time low background + focusing in the same system
 - Very important operative experience for IAXO

- Installed & commissioned successfully in CAST last september. Now taking data
Additional IAXO physics cases

• Detection of “ABC”-produced solar axions (with relevant g_{ae} values)
• More specific WISPs models at the **low energy frontier** of particle physics:
 – Paraphotons / hidden photons
 – Chamaleons
 – Non-standard scenarios of axion production
• Possible addition technologies to push E thresholds down:

![Diagram](image-url)

- GridPix/Ingrid detectors
- Magnetic Metallic Calorimeter (MMC)
- Low-noise CCDs

IAXO as “generic axion/ALP facility”
AXION Cosmology

- **Axions are produced** in the early Universe by a number of processes:

 - Axion realignment
 - Decay of axion strings
 - Decay of axion walls

\[
\begin{align*}
\text{NON-RELATIVISTIC (COLD) AXIONS} \\
\text{RELATIVISTIC (HOT) AXIONS}
\end{align*}
\]
AXION Cosmology

- Axion realignment:

When $T > T_{QCD}$
\[<a_{\text{phys}} > \text{ is arbitrary} \]

When $T \sim T_{QCD}$
\[<a_{\text{phys}} > \rightarrow 0 \]

As the Universe cools down below T_{QCD}, space is filled with low energy axion field fluctuations.

Their density depends on the initial value of $<a_{\text{phys}}>$

(“misalignment angle”)
Axion Cosmology

- The **CDM axion relic density** is uncertain as it depends on several factors:

- Inflation before PQ transition **CASE 1**
 - “initial misalignment angle” $<a_{phys}>_0$ varies spatially \rightarrow Averaged.
 - Contributions from axion strings and domain walls must be computed \rightarrow difficult (see Sikivie astro-ph/0610440)

- Late-inflation scenario (inflation after PQ transition) **CASE 2**
 - The “initial misalignment angle” $<a_{phys}>_0$ unique for all visible universe.
 - Strings and walls wiped out by inflation. Not contributing. And in any case difficult to compute their contribution.

- Very approximately:

$$\Omega_a \sim 0.15 \left(\frac{f_a}{10^{12} \text{ GeV}} \right)^{7/6} \left(\frac{0.7}{h} \right)^2 \alpha_1^2$$

CASE 2

$$\sim 0.7 \left(\frac{f_a}{10^{12} \text{ GeV}} \right)^{7/6} \left(\frac{0.7}{h} \right)^2$$

CASE 1

Sikivie astro-ph/0610440
Axion Cosmology

- Which value for f_a (and therefore mass) gives the right amount of axion density?
 - Late-inflation: Wide range of mass possible if initial misalignment “tuned”
 - Late-inflation: Mass determined but calculation uncertain.

- In general...
 - Range of axion masses of 10^{-6} – 10^{-3} eV are of interest for the axion to be the (main component of the) CDM.

$\Omega_a \sim 0.5 \left(\frac{10^{-5} \text{ eV}}{m_a} \right)^{7/6}$

J. Hamann et al. arXiv:0904.0647
Axion Cosmology

- **Relativistic axions (HDM)** are created by thermal production:
 - At high T, axions are in creation-annihilation equilibrium with the rest of particles (thermal population of axions, satisfying Boltzmann equation).
 - When the Universe cools down below T_{Df}, the axion freeze-out temperature, the thermal population decouples and its density red-shifts till today.

\[T_{D} \sim 5 \times 10^{11} \text{ GeV} \left(\frac{f_{a}}{10^{12} \text{ GeV}} \right)^{2} \]

- In order to have substantial relativistic axion density, the axion mass must be close to 1 eV. ($m_{a} > 1.02$ eV gives densities too much in excess to be compatible with latest CMB data)

From Wantz 2010
The cooling of white dwarfs

- Luminosity function (WD’s per unit magnitude) altered by axion cooling
- Claim of detection of new cooling mechanism (Isern 2008)
- Axion-electron coupling of $\sim 1 \times 10^{-13}$ (\rightarrow axion masses of 2-5 meV or larger) fits data.
The cooling of white dwarfs

- meV masses seem out of reach of even for an improved axion helioscope... BUT
- Axion-electron coupling provides extra axion emission from the Sun...
- Extra emission concentrated at lower energies (~1 keV)

- Such axion could produce a detectable signal in IAXO
IAXO sensitivity prospects

- Factor ~ 20 better in $g_{a\gamma}$ ($\sim 10^{4-5}$ in signal strength!!)