Experimental searches for axions

Igor G. Irastorza Universidad de Zaragoza TeV Particle Astrophysics (TeVPA2016), CERN, 12 September 2016

Axions: theory motivation

- Peccei-Quinn solution to the strong CP problem or why QCD seems not to violate CP, while one would expect to do so
- New U(1) symmetry introduced in the SM: Peccei Quinn symmetry of scale f_a
- The AXION appears as the Nambu-Goldstone boson of the spontaneous breaking of the PQ symmetry

Axion phenomenology

• Axion-photon coupling present in every model.

$$\mathcal{L}_{a\gamma} = g_{a\gamma\gamma} (\mathbf{E} \cdot \mathbf{B}) a \quad g_{a\gamma\gamma} = \frac{\alpha_s}{2\pi f_a} \left(\frac{E}{N} - 1.92\right)$$

Axion-photon conversion in the presence of an electromagnetic field (Primakoff effect)

This is probably the most relevant of axion properties.

Most axion detection strategies are based on the axion-photon coupling

Beyond axions

Non thermal cosmological axions

Axion realignment

As the Universe cools down below T_{QCD} , space is filled with low energy axion field fluctuations.

Their density depends on the initial value

of <a_physic > ("misalignment angle")

But also... topological defects

But inflation may "wipe out" topological defects... Did inflation happen before or after the creation of defects (PQ transition) ? *pre-inflation or postinflation scenarios*

Astrophysical hints for axions

Gama ray telescopes like MAGIC or HESS • observe HE photons from very distant sources...

Astrophysical hints for axions (II)

- Most stellar systems seem to cool down faster than expected.
- Presence of axions/ALPs offer a good joint explanation (Giannotti et al. JCAP05(2016)057 [arXiv:1512.08108])
- Parameters at reach of IAXO

Axion motivation in a nutshell

- Most compelling solution to the **Strong CP problem** of the SM
- Axion-like particles (ALPs) predicted by many extensions of the SM (e.g. string theory)
- Axions, like WIMPs, may solve the DM problem for free. (i.e. not ad hoc solution to DM)
- Astrophysical hints for axion/ALPs?
 - Transparency of the Universe to UHE gammas
 - − Stellar anomalous cooling \rightarrow g_{aγ} ~ few 10⁻¹¹ GeV⁻¹ / m_a ~few meV ?
- Relevant axion/ALP parameter space at reach of current and nearfuture experiments
- Still too little experimental efforts devoted to axions when compared e.g. to WIMPs...

Detection of axions

- Axion photon coupling *generically* present in every axion model.
- Axion-photon conversion in the presence of an electromagnetic field (Primakoff effect)
- Most detection techniques based on the axion-to-photon conversion inside magnets
- Other couplings possible, but less generic (model dependent)
 - → axion-electron coupling
 - → axion-nucleon coupling

Detection of axions

Source	Experiments	Model & Cosmology dependency	Technology
Relic axions	ADMX, X3, CASPEr, CAPP,	High	New ideas emerging,
Lab axions	ALPS, OSQAR, fifth force exps,	Very low	Active R&D going on,
Solar axions	SUMICO, CAST, IAXO	Low	Ready for large scale experiment

Detecting DM axions: "haloscopes"

ADMX

- Leading haloscope experiment
- Many years of R&D
- high Q cavity $(1 \text{ m x } 60 \text{ cm } \emptyset)$
- 8 T superconducting solenoid
- Low noise receivers based on SQUIDs + dilution refrigeration at 100 mK.
- Sensitivity to few μeV proven
- Good support through Gen 2 DM US program
- Current program will surely cover 1-10 μeV with high sensitivity (i.e. reaching ever pessimistic coupling). What about higher masses?

Haloscopes at higher axion masses

- **Problemetic:** higher $m_a \rightarrow$ lower V \rightarrow lower sensitivity
- Active R&D inside ADMX
- X3 (before ADMX-HF)
- **CAPP** in Korea \rightarrow very important effort
 - CULTASK & others...
- CAST as haloscope: ٠ CAST-CAPP, RADES.

Also...

- **Dish antennas**
- **CASPEr**

 JPA: sub-quantum-limited, tunable from 4.4 to 6.4 GHz

To Receiver

Bandpass Filter

Amplifier Phase Shifter

Active Resonators

Divider

Strongly Coupled

Beyond haloscopes...

Dish antennas:

No resonance, but large area possible...

MADMAX Prototype

setup at MPI Munich

Waveguide Coupling

Realistic sensitivity limited, but boost ٠ possible with dielectric multilayer

Wire Planes

Directionality possible

Horns et al. JCAP 1304 (2013) 016 Jaeckel, Redondo JCAP 1311 (2013)

 $m_A[eV]$

TeVPA 2016, CERN

back production and all reflexion

Reflector

Igor G. Irastorza / Universidad de Zaragoza

in Seattle

Beyond haloscopes...

- DM-induced spin precession?: CASPEr experiment (Mainz-Berkeley)
- Competitive at very low m_a

- Also QUAX experiment (Padova):
 - Sensitive to "axion DM wind" through axion-electron coupling

Light shining through wall

2007: http://link.aps.org/doi/10.1103/PhysRevLett.98.172002

ALPS @ DESY-Hamburg

Any Light Particle Search @ DESY: ALPS I concluded in 2010

- ALP II under preparation
- (resonant, 10+10 magnets,...)
- Also: OSQAR@CERN, CROWS@CERN, PVLAS @ Ferrara, GammeV & REAPR @ Fermilab, US, BMV @ Toulouse

parameter	scaling	ALPS I	ALPS IIc	sens. gain
BL (total)	$g_{a\gamma} \propto (BL)^{-1}$	22 Tm	468 Tm	21
PC built up ($P_{\text{laser,eff.}}$)	$g_{ m a\gamma} \propto eta_{ m PC}^{-1/4}$	1 (kW)	150 (kW)	3.5
rel. photon flux \dot{n}_{prod}	$g_{a\gamma} \propto \dot{n}_{\rm prod}^{-1/4}$	1 (532 nm)	2 (1064 nm)	1.2
RC built up $\beta_{\rm RC}$	$g_{ m a\gamma} \propto eta_{ m RC}^{-1/4}$	1	40,000	14
detector eff. DE	$g_{a\gamma} \propto D E^{-1/4}$	0.9	0.75	0.96
detector noise DC	$g_{\mathrm{a}\gamma} \propto D C^{1/8}$	$1.8 \cdot 10^{-3} \mathrm{s}^{-1}$	$10^{-6} \mathrm{s}^{-1}$	2.6
combined				3082

Axion-mediated macroscopic forces

Axions could be detected as short-range deviation of gravity... (but traditionally though without enough sensitivity to QCD axions)

Recently proposed: ARIADNE experiment Short-range force by NMR technique

Solar Axions

 Solar axions produced by photonto-axion conversion of the solar plasma photons in the solar core

ior

Solar Axions

• In addition to Primakoff, "ABC axions" may be x100 more intense... but model-dependent.

0

Axion helioscopes

Axion helioscope concept P. Sikivie, 1983 + K. van Bibber, G. Raffelt, et al. (1989) (use of buffer gas)

tray detector tray

Buffer gas for higher masses.

Coherence condition (qL << 1) is recovered for a narrow mass range around m_y

Other types of helioscope

- Instead of magnetic field, one can use the electromagnetic field of crystals...
- « Primakoff-Bragg » effect
- WIMP-like experiments provide limit to axions: SOLAX, COSME, DAMA, EDELWEISS, CDMS, etc...
- Characteristical temporal pattern:

«

Other types of helioscope

- « TPC in a magnetic field »: conversion and absorption happening in the gas
- Competitive only for high axion mass
- Old idea recently studied

CAST experiment @ CERN

- Decommissioned LHC test magnet (L=10m, B=9 T)
- Moving platform ±8°V ±40°H (to allow up to 50 days / year of alignment)
- 4 magnet bores to look for X rays
- 3 X rays detector prototypes being used.
- X ray Focusing System to increase signal/noise ratio.

CAST results

2003 – 2004	CAST phase I vacuum in the magnet bores
2006	CAST phase II - ⁴He Run • axion masses explored up to 0.39 eV (160 P-steps)
2007	³ He Gas system implementation
2008 - 2011	CAST phase II - ³ He Run • axion masses explored up to 1.17 eV • bridging the dark matter limit
2012	•Revisit 4He Run with improved detecors
2013- 2015	 Revisit vacuum phase with improved detectors Analisis ongoing. New result soon available

4+ orders of magnitude better SNR that CAST (JCAP 1106:013)

IAXO technologies – Baseline

IAXO telescopes

- Slumped glass technology with multilayers
- Cost-effective to cover large areas
- Based on NuSTAR developments
- Focal length ~5 m
- 60-70% efficiency
- LLNL+UC+DTU+MIT
 expertise

IAXO magnet

- Superconducting "detector" magnet.
- Toriodal geometry (8 coils)
- Based on ATLAS toroid technical solutions.
- CERN+CEA expertise
- 8 bores / 20 m long / 60 cm Ø per bore

Baseline developed at: IAXO Letter of Intent: CERN-SPSC-2013-022 IAXO Conceptual Design: JINST 9 (2014) T05002 (arXiv:1401.3233)

Rotation System

IAXO detectors

- Micromegas gaseous detectors
- Radiopure components + shielding
- Discrimination from event topology in gas
- Long trajectory in CAST
- Zaragoza + CEA (+ others) expertise
- Also considered: Ingrid, MMCs, CCDs

TeVPA 2016, CERN

Services

Tŧ

Conclusions

- Increasing interest for axions:
 - Beyond axions: ALPs / WISPs
- Increasing experimental effort (still small!)
- Consolidation of classical detection lines: ADMX, CAST, ALPs,...
 - ADMX and CAST have firstly probed interesting (small) fraction of par space.
- Helioscopes: IAXO next generation
- Haloscopes: ADMX, CAPP \rightarrow R&D to go higher m_a
- New ideas to tackle new regions: Dish antenna, dielectric layers, NMR,...
- Large fraction of parameter space at reach of near-future experiments
 - chances of discovery!

Good timing for axions... stay tuned

Backup slides...

Axions: theory motivation

- Axion: introduced to solve the strong CP problem
- In QCD, nothing prevents from introducing a term like:

 $\mathcal{L}_{CP} = \theta \frac{\alpha_s}{8\pi} G \tilde{G}$

This term is **CP violating**.

$$\theta = \bar{\theta} + \arg \det M$$

2 contributions of very different origin...

From non-observation of neutron electric dipole moment:

$$|\theta| < 0.7 \times 10^{-12}$$

•Why so small?

•High fine-tunning required for this to work in the SM

Axions: theory motivation

- Peccei-Quinn solution to the strong CP problem or why QCD seems not to violate CP, while one would expect to do so
- New U(1) symmetry introduced in the SM: Peccei Quinn symmetry of scale f_a
- The AXION appears as the Nambu-Goldstone boson of the spontaneous breaking of the PQ symmetry

$\theta = a/f_a$ relaxes to zero... CP conservation is preserved "dinamically"

The axion

The PQ scenario solves the strong CP-problem. But a most interesting consequence is the appearance of this new particle, the *axion*.

(Weinberg, Wilcek)

$$\mathcal{L}_a = \frac{1}{2} (\partial_\mu a)^2 - \frac{\alpha_s}{8\pi f_a} a G \tilde{G}$$

Basic properties:

- Pseudoscalar particle
- Neutral
- Gets very small mass through mixing with pions
- Stable (for practical purposes).
- Phenomenology driven by the PQ scale f_a . (couplings inversely proportional to f_a)

OSQAR @ CERN

- GammeV & REAPR @ Fermilab, US
- **BMV** @ Toulouse
- **PVLAS** @ Ferrara
- **CROWS @ CERN**

Axion Helioscopes

• Previous helioscopes:

- First implementation at Brookhaven (just few hours of data) [Lazarus et at. PRL 69 (92)]
- TOKYO Helioscope (SUMICO): 2.3 m long 4 T magnet

- Presently running:
 - CERN Axion Solar Telescope (CAST)

IAXO magnet

IAXO magnet

		Property		Value
		Cryostat dimension	s: Overall length (m)	25
Keystone Box			Outer diameter (m)	5.2
			Cryostat volume (m^3)	~ 530
Keystone Plate	Coil	Toroid size:	Inner radius, R_{in} (m)	1.0
	Casing		Outer radius, R_{out} (m)	2.0
			Inner axial length (m)	21.0
			Outer axial length (m)	21.8
		Mass:	Conductor (tons)	65
			Cold Mass (tons)	130
			Cryostat (tons)	35
	Coil		Total assembly (tons)	~ 250
		Coils:	Number of racetrack coils	8
			Winding pack width (mm)	384
			Winding pack height (mm)	144
	Thermal		Turns/coil	180
Support	Shield		Nominal current, I_{op} (kA)	12.0
Feet	Vessel		Stored energy, E (MJ)	500
	T COSCI		Inductance (H)	6.9
			Peak magnetic field, B_p (T)	5.4
			Average field in the bores (T)	2.5
		Conductor:	Overall size (mm^2)	35×8
	1		Number of strands	40
IAXO magnet concept presented in:			Strand diameter (mm)	1.3
ALEEE Trans. Appl. Supercond. 22 (ASC 2012)			Critical current @ 5 T, I_c (kA)	58
•IEEE Irans. Appl. Supercond. 23 (ASC 2012)			Operating temperature, T_{op} (K)	4.5
•Adv. Cryo. Eng. (CEC/ICMC 2013)			Operational margin	40%
•IFEE Trans Appl Supercond (MT 23)			Temperature margin @ 5.4 T (K)	1.9
		Heat Load:	at 4.5 K (W)	~ 150
			at 60-80 K (kW)	~ 1.6

IAXO x-ray optics

- X-rays are focused by means of grazing angle reflection (usually 2)
- Many techniques developed in the x-ray astronomy field. But usually costly due to exquisite imaging requirements

IAXO x-ray optics

TeVPA 2016, CERN

IAXO x-ray optics

- Technique of choice for IAXO: optics made of slumped glass substrates coated to enhance reflectivity in the energy regions for axions
- Same technique successfully used in NuSTAR mission, recently launched
- The specialized tooling to shape the substrates and assemble the optics is now available
- Hardware can be easily configured to make optics with a variety of designs and sizes
- Key institutions in NuSTAR optics: LLNL, U.
 Columbia, DTU Denmark. All in IAXO !

IAXO low background detectors Optics+detector pathfinder system in CAST

- IAXO optics+detector joint system
 - Newly designed MM detector (following IAXO CDR)
 - New x-ray optics fabricated following technique proposed for IAXO (but much smaller, adapted to CAST bore)
 - First time low background + focusing in the same system
 - Very important operative experience for IAXO
 - Installed & commissioned successfully in CAST last september. Now taking data

Additional IAXO physics cases

- Detection of "ABC"-produced solar axions (with relevant g_{ae} values)
- More specific WISPs models at the low energy frontier of particle physics:
 - Paraphotons / hidden photons
 - Chamaleons
 - Non-standard scenarios of axion production
- Possible addition technologies to push E thresholds down:

IAXO as "generic axion/ALP facility"

TeVPA 2016, CERN

AXION Cosmology

Axions are produced in the early Universe by a number of processes:

Axion realignment
 Decay of axion strings
 Decay of axion walls
 NON-RELATIVISTIC (COLD) AXIONS
 Thermal production
 RELATIVISTIC (HOT) AXIONS

AXION Cosmology

Axion realignment:

As the Universe cools down below T_{QCD} , space is filled with low energy axion field fluctuations.

Their density depends on the initial value of $\langle a_{phys} \rangle$ ("misalignment angle") TeVPA 2016, CERN Igor G. Irastorza / Universidad de TeVPA 2016, CERN Zaragoza

Axion Cosmology

- The CDM axion relic density is uncertain as it depends on several factors:
- Inflation before PQ transition CASE 1
 - "initial misaligment angle" $\langle a_{phys} \rangle_0$ varies spatially \rightarrow Averaged.
 - Contributions from axion strings and domain walls must be computed→ difficult (see Sikivie astro-ph/0610440)
- Late-inflation scenario (inflation after PQ transition) CASE 2
 - The "initial misaligment angle" $\langle a_{phys} \rangle_0$ unique for all visible universe.
 - Strings and walls wiped out by inflation. Not contributing. And in any case difficult to compute their contribution.
- Very approximately:

$$\begin{split} \Omega_{a} &\sim 0.15 \left(\frac{f_{a}}{10^{12} \text{ GeV}} \right)^{7/6} \left(\frac{0.7}{h} \right)^{2} \ \alpha_{1}^{2} & \text{CASE 2} \\ &\sim 0.7 \left(\frac{f_{a}}{10^{12} \text{ GeV}} \right)^{7/6} \left(\frac{0.7}{h} \right)^{2} & \text{CASE 1} \\ \end{split}$$

TeVPA 2016, CERN TeVPA 2016, CERN

Axion Cosmology

- Which value for f_a (and therefore mass) gives the right amount of axion density?
 - Late-inflation: Wide range of mass possible if initial misalignment "tuned"
 - Late-inflation: Mass determined but calculation uncertain.

In general...

 Range of axion masses of 10⁻⁶
 - 10⁻³ eV are of interest for the axion to be the (main component of the) <u>CDM</u>.

$$\Omega_a \sim 0.5 \left(\frac{10^{-5} \text{ eV}}{m_a}\right)^{7/6}$$

TeVPA 2016, CERN TeVPA 2016, CERN

Axion Cosmology

Relativistic axions (HDM) are created by thermal production:

- At high T, axions are in creation-annihilation equilibrium with the rest of particles (thermal population of axions, satisfying Boltzmann equation).
- When the Universe cools down below T_D , the axion freeze-out temperature, the thermal population decouples and its density red-shifts till today. $T_D \sim 5 \times 10^{11} \,\text{GeV} \left(\frac{f_a}{10^{12} \,\text{GeV}}\right)^2$

In order to have substantial relativistic axion density, the axion mass must be close to 1 eV. (ma >1.02 eV gives densities too much in excess to be compatible with latest CMB data) Hannestad et al, JCAP 0804 (2008) 019 [0803.1585 (astro-ph)]

TeVPA 2016, CERN TeVPA 2016, CERN

From Wantz 2010

TeVPA 2016, CERN

The cooling of white dwarfts

(Isern et al. 2008,2010)

- Luminosity function (WD's per unit magnitude) altered by axion cooling
- Claim of detection of new cooling mechanism (Isern 2008)
- Axion-electron coupling of ~1x10⁻¹³
 (→ axion masses of 2-5 meV or larger) fits data.

The cooling of white dwarfs

- meV masses seem out of reach of even for an improved axion helioscope... BUT
- Axion-electron coupling provides extra axion emission from the Sun...
- Extra emission concentrated at lower energies (~1 keV)

 Such axion could produce a detectable signal in IAXO

IAXO sensitivity prospects

 Factor ~20 better in g_{aγ} (~10⁴⁻⁵ in signal strength!!)

