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IBL detector:
• Ø80mm x 800mm (7m including services)
• 1 kW @ -40°C (+1kW ambient)
• 14 staves with 1 cooling pipe

Atlas Inner B-Layer (IBL)
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New detector with smaller beam pipe 
in space of previous beam pipe

Carbon foam structure

1.5mm ID titanium cooling pipe

Pixel detector chips 
(30-70 watt/stave)    



Atlas IBL: A new 1st layer 

around a reduced beam pipe
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IBL pixel 
sensors

IBL Carbon stave with cooling pipe

IBL Stave

IBL an extra 
pixel layer

Component 

(32 per stave)

Power 

(W/unit)

Power 

(W/stave)
FEI4 chip 1.12 35.84
Pixel sensor (after irradiation) 0.68 21.61
Stave flex 0.17 5.38
Type 1 cables 0.17 5.38

Total per stave 68.21
Total for 14 staves 954.94

Cooling temperature required: <-35°C



Installation of the IBL in ATLAS

(June 2014)
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The IBL installation

The IBL installed

The IBL central stave section



The IBL cooling loop layout (1)
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Connection
tube bundle
14x 3x0.5mm

ID end plate dry 
volume

*

**

** *

**** * ***
*

* *

* **

* * * *** * *
*

**

*

Inner detector (TRT+SCT+Pixel)

Electromagnetic calorimeter (LAR)

Hadronic calorimeter (Tile)

Solenoid magnet

Splitter box 
(Concentric split 
and vacuum
termination)

Vacuum insulated  
concentric tubes 
(flex lines)
(7x1.6x0.3mm inlet 
inside 4x0.5mm 
outlet)

Manifold box

Junction box

Vacuum insulated transfer line
Muon area  sector 5

(LAR)

Beam pipe

IBL detector

IBL module group with NTC sensor

Flex

Cable board with NTC

Cable with NTC
Stave supports

Inlet cooling pipe (1.7x0.1mm Ti) Outlet cooling pipe (2.2x0.1mm Ti)

Stave cooling pipe (1.7x0.1mm Ti)

Inner support tube (IST)

PP0 Ti braze joint with NTC

PP1 Sealing ring

Electrical break

SS pipe to 
cooling system

PP1 Detachable connector

Beam pipe

*= NTC temperature sensor

1 round trip = 1 loop = 31m
11m*1.6/1.0mm* + 
5m* 1.7/1.5mm* + 
4m*2.2/2mm*+
11m*4mm/3mm*-1.6mm 

concentric
*OD/ID



The IBL cooling loop layout (2)
(C-side view)
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Vacuum insulated  
concentric transfer line

Splitter box (Concentric split & end of vacuum shield)

Capillary bundle in foam insulation towards detector

Foam insulated junction piping

Vacuum insulated  
Concentric in and outlet 
tubes (7 C-side & 7 A-side) 

LAR station

To USA-15 cavern

Junction box (JB) containing valves, sensors 
and dummy load 

Manifold box (MB)

Muon BIL

Muon BML

Muon BOL

IBL



Cooling Connection in PP1
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Splitter manifold

Exposed tubes

Detector-Cooling 
interface



The IBL distribution flex lines
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• In the IDEP there was only ~18mm space on top of the services for 
cooling tubes including insulation. A flexible vacuum insulated hose 
was build. Cooling line integration similar to cabling.

• 18mm corrugated vacuum with a concentric tube of 1.5mm inside a 
4mm tube. A 4mm tube is still relatively flexible.

• Insulation purpose: Avoid condensation, heat leak is less important.

Flex line path in IDEP

4mm tube with MLI

Flex line X-section

No cool outer surfaces

Splitter box

See details in Claudio’s talk at FTDM-2015, https://indico.cern.ch/event/363327/contributions/860744/attachments/722740/991990/ForumNikhef2015.pdf



IBL cooling system layout
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FL018

⅜”

AV017

20

36

BD016
PT116 / PT316
TT116 / TT316

MV018
MV036

Detector boundary

Junction box @ Muon Sector 5 (Accessible)
LAR 
Cryo
area

HX036

⅜”

Dummy load 
(testing only)

BD020
PT120 / PT320
TT120 / TT320

BD036
PT136 / PT336
TT136 / TT336

MV035

EH117
TT117
TS117

HX012

FL017

MV017
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USA-15

UX-15

Vacuum system
(LAR Cryo area)

DN40

¼”

½”

BV, 03-09-2014

Transfer tubes (~92m)

CO2: 10x1mm  inside 
21.3x2.11mm outside
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A200 A100 B400 B300 C042

D012

TTz20 (DCS) TTz36 (DCS)

TTa24 - TTn24
(DCS)

28 30

Tracking detectors

Tile calorie meter

LAR calorie meter

14 IBL staves (a-g),(7 flow pairs) 
(7x A-›C flow / 7x C-›A flow)Dry volume

DCS: TTa28 – TTn28 DCS: TTa30 – TTn30

2830

32

24

20 36

Liquid inlet Vapor outlet

Vacuum system

Concentric flex line Concentric flex line
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a 1 A-C

b 2 C-A

c 3 A-C

d 4 C-A

e 5 A-C

f 6 C-A

g 7 A-C

h 8 C-A

i 9 A-C

j 10 C-A

k 11 A-C

l 12 C-A

m 13 A-C

n 14 C-A

Junction box with dummy load 

Manifold box

Detector with counter flow cooling loops

100m Transfer lineVacuum system

Cooling plants and control racks



Transfer line

CO2 cooling hardware in UX

Junction box

Vacuum system

Flex lines Manifold box



AC042

LP101

vent
evacuate
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Accumulator with 
integrated heating 
and cooling 

dummy load
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Cooling plants in USA-15
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Paccu @ 0°

Paccu @ -40°

Minimum liquid 
temperature

Sub cool 
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Liquid 
temperature 
variation
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Cooling plant Junction box11
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USA15 UX15

Manifold box

1

Liquid flow
2-phase flow

2

5
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6

7

3 4
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10

The lower the cooling 
temperature, the more 
stable the primary 
cooling required

IBL CO2 operation cycle, challenges at cold 

temperatures

Heat 
exchange



-35°C set-point

20°C cooling
Accumulator 
pressure 
lowering for 
cool down

Pressure increase 
for liquefying 
prior to start-up

Sub cooled pumped liquid
( follows chiller temperature)

Saturation temperature

Liquid cooling

2-phase cooling

CO2 plant operation 
(over junction box)

Accumulator unit

CO2 unitCooling plant Junction box11

8
9

USA15 UX15

Manifold box

1

Liquid flow
2-phase flow

2

5

5”

6

7

3 4

7”

10

11

2

3, 5”, 7”(Tsat)

9 Sub cooled liquid 
margin for pump 
operation (>10 °C)



The 2-Stage Chiller
Cold and stable operation

cooling water

R404A 2-stage compressor GP250
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2-stage compressor for low 
temperature operation

• The chiller is 2-stage to reach 
lower temperatures
o CO2 liquid: <-50⁰C
o Challenging: CO2 freezes at -56⁰C

• Chiller need to be very stable 
o Different tricks to stabilize under 

load changes:

• Hot gas by-pass with liquid 
injection

• Back-pressure regulation

• Compressor speed control 
(30-70Hz).

o Advanced super heating control 
due to low gas temperature from 
main evaporator

• Hot gas injection during fast 
changes to avoid liquid in the 
compressor

• Suction line accumulator

• 2 primary cooling sources:
o Water cooling

o Air cooling (Back-up)

• All commercial refrigeration 
technologies
o Bitzer, Danfoss, Carel, Swep, Alfa-

Laval



Chiller capacity and temperature control

• Suction pressure control: 

o Suction pressure must stay above -70°C 

saturation

o Compressor speed: 30-70 Hz

o Hot-gas-bypass with liquid injection below 30 

Hz

• Evaporator control:

o Saturation must stay above -55°C to avoid CO2

freezing

o Back Pressure Regulator (BPR)

• Experience and adjustments

o The BPR control was too difficult to follow the 

dynamics as the operation pressure is very low 

(0.3 – 0.7 bar)

o The hot-gas-bypass set-point was increased 

above -55°C

• Advantage: more stable evaporator 

temperature

• Drawback: Efficiency loss

o The BPR is still active as a protection shield 

against low suction pressures

1625/05/2016 B. Verlaat
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Cooling plant Junction box11
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Manifold box
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Liquid flow
2-phase flow
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• Flow via internal by-pass
• Using internal heater for load
• Set-point 60 bar => all liquid
• dT10-11 for load measurement

(Q10-11)



Cooling system warm start-up 

and cold operation

Pressurization of 
the system

Cool down (Can be controlled to 
any speed, shown is max speed)

-40’C set-point 
reached

1kW
2kW 3kW

-35’C set  point

3kW is to much for -40’C operation, 
unable to hold set-point (green line)

Liquid CO2 temperature following 
chiller saturation

Unable to keep chiller set point 
(>70Hz)

17

System being liquefied



IBL Cooling system operation at 

-40°C set-point

Capable of maintaining 
set point from 0 to 2kW

0W
1500W

2000W
2500W

Compressor at full speed, 
temperature of liquid 
increases

Margin of sub cooling 
must be maintained. 
>10’C for safe operation

Chiller temperature and CO2 liquid

Junction box temperature

Unable to maintain 
-40’C set point

-35’C to -40’C set 
point change

3000W

18

Transfer line loss 
(heat load depended)



IBL Cooling system operation at 

-35°C set-point
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0W

Capable of maintaining set 
point from 0 to 3kW

0W
500W

1000W
1500W

2000W
2500W

Compressor at full speed, 
temperature of liquid 
increases

Margin of sub cooling 
must be maintained. 
>10°C for safe operation

Chiller temperature and CO2 liquid

Junction box temperature



Junction box saturation

Accumulator saturation

CO2 liquid temperature

Turbo-mode bit

Junction box heat load (1.5 kW)

Chiller super heating (Control input)

Freon injection valve

Aggressive control in turbo-mode

turbo-mode needed 
to remain sub cooling

Temporary accu cooling 
stop to give priority to 
CO2 liquid cooling

Cooling system reaction on load 

changes



IBL Cooling system operation at 

+15°C set-point

350 Watt on junction box heater

Increasing JB outlet 
temperature (D), increases 
the inlet temperature (C) and 
hence D, etc. A small heat 
load is sufficient to avoid 
cold liquid in the junction 
box  

No heat on JB, slow cool 
down in liquid mode

A further lowering of the set-point 
catches up with cold liquid

Plant is cold, detector side is 
warm due to transfer line

Pump outlet

Plant return



Commissioning Period

• The total commissioning period was about 1 year

• System commissioning:
o January-April 2014: Plant stand alone commissioning

• I/O checks

• Alarm settings

• System tuning

• Capacity measurements

o April-June 2014: System commissioning over junction box with 
dummy load

• Full system checks

• Full system fine tuning

• 25 June 2014: first cooling flow through detector.

• System commissioning with detector
o June-August 2014

• Explore detector behaviour with warm cooling (No IDEP 
closure)

• Detector commissioning

• Fine tune system to detector behaviour

o 29 August 2014

• First cold cooling (-25°)

o September 2014

• Blow off system commissioning for bake-out

• Prepare cooling system for bake-out

o 15-29 October 2014

• Bake-Out period

o November-December 2014

• Steady state cooling tests

o January-May 2015

• Long term testing

o June 2015

• LHC restart

2225/05/2016 B. Verlaat
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Stave1 temperature

“Warm” 
commissioning

Bake-out

Thermal chock 
incident

1st cool 
down trial

Steady 
state tests

Detector temperature

Cooling system start-up over junction box (liquefying)

Cooling system over 
junction box commissioning 
(went to -40’C no effect on 
detector)

Cooling system cool down over 
junction box (evaporating)

2 days

Start cooling through IBL

Today’s detector 
cooling, see next slide

First flow through detector

Detector temperature during commissioning 



Detector check-out

• The cooling system showed a stable 
behaviour of the detector temperature, both 
under powered and unpowered condition

• Detector temperature offset with respect to 
cooling set-point was observed to be around 
6-9°C
o 4°C due to stave conduction, rest by pressure drop 

gradients

o It was discovered that the temperature sensors 
show a large offset

o Sensors have been recalibrated in situ.

• Good flow  impendence similarity wrt SR1 
tests
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Bake-out (1)

• The beam pipe bake-out was a crucial event for the IBL cooling
o The beam-pipe was heated in steps to 230⁰C, the cooling system must prevent the IBL to over heat

o A special operation of the cooling was established

• 2 systems operated in parallel 

• System back-up by a bottle battery blow system

• Results and observations
o Maximum recorded sensor temperature was -8⁰C @ 230⁰C beam pipe

o Despite the high ambient load, the staves were hard to boil. (Single phase worked well for BO)

o Due to twice the flow (2 systems in parallel) => ca. 4x pressure drop, most staves stayed single phase for  long time.  

o What was interesting to see is that the boiling front stayed at the same location for a long time despite load increase

• This indicates that something linked to the geometry is triggering the boiling. => Too smooth pipes?

• No issues during bake-out, system run without problems
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Stave 07 was boiling above 60’C 

Stave 05 never made it to

Stave 01 started boiling at 120’C

Stave 01 inlet started boiling just 
at the end of bake-out 

Stave 04 boiling (except module 1)



IBL plant failure test with 3kW heat load 
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FT901 Blow system flow

FT106 IBL-A flow

FT306 IBL-B flow

TT116 Junction box liquid

TT136 Junction box return (2phase)

TT117 Heater

Failure of plant B

Plant A continues delivering flow

Failure of plant A

Blow system delivers identical flow 
as 1 plant

Cooling temperature 
remains stableHeater temperature

25 minutes of stable 3kW cooling using blow system (3kW Test 
was stopped to save CO2)  

The graph show a failure of plant B and A followed by the blow system activation. 
A 3kW heat load was on all at time. Shown are the flows and heater temperature.



IBL plant failure test 

with 3kW heat load 

• Activation of the blow 
system was successful
o In case of blow activation 

beam pipe bake-out would 
be interlocked.

o The 400 liter of CO2 battery 
is good for 3hours 
additionally cooling, more 
than sufficient for a beam 
pipe cooldown
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TT108 Plant feed

TT901 Blow system feed

TT116 Junction box liquid

TT136 Junction box return (2phase)

TT146 Plant return

TT902 Blow system return

TT905 Heated CO2

TT906 Vented CO2

Cooling performed by cold 
liquid from the cooling 
plant

Cooling performed by warm 
liquid from the battery

Heated CO2 gas for 
proper venting

Vented CO2 gas

2-phase CO2 in junction box 
provided either by plant or blow 
system 

Returned CO2 from 
transfer line

Temperatures during inactivity are deleted  

The graph show the same test as the previous graph and displays the 
temperatures in the cooling plants and in the blow system 



The IBL cooling heat loads

• The cooling system has to coop with several heat 
loads:
o Detector electronics power

o Ambient heat leak in the detector

o Ambient heat leak of the system

• The total heat load can be measured under certain 
circumstances
o The return in the plant can still be liquid despite of having 2-

phase in the detector

o The dT of the liquid feed and return is a function of heat load

• The IBL heat leak can be calculated, by subtracting 
the heat leak observed during Junction Box tests

• The ambient heat leak in the detector, the system 
and the detector power is at the same order around 
-15°C
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IBL steady state temperature analyses results 

and CoBra comparison 

• The next slides give an overview of the 
measured (and corrected) IBL temperatures 
with respect to the CoBra simulation results.

• Each plot contains the data for a powered an 
not powered IBL detector per temperature set 
point. 
o Blue data is related to the unpowered situation, red data 

with respect to the powered situation

• The outlet flex line temperature profile in the 
graph is mirrored to match in the input to the 
output 
o Heat exchange behavior becomes visible

• Measured Inputs to the CoBra model:
o Plant mass flow

o Cooling loop outlet pressure

o Cooling loop inlet temperature

o Average cable board temperature as ambient 
temperature indications.

o A 35 W/m2K heat transfer to the pipes and the structure. 
This value is matched to the measured ambient heat leak 
explained in the previous slide.

o Ambient temperature taken from the cable temperature 
under no-load condition.
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Q1 is calculated in 
the thermal network
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3

4

The thermal node network calculates the heat influx in 

the cooling pipe based on:
•Applied power Q3 on node 3

•Environmental heating from fixed temperature T4 on node 4
•Heat exchange with another pipe section via R5 between 

nodes 2 and 2 of the connected sections



Set point = -30°C
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Set point = -25°C
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Set point = -20°C
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IBL temperatures for set point -20ºC; Measured data and CoBra simulation results
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Set point = -15°C
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 Inlet:
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 Cable board temperature: -6.2±0.2 ºC / -0.7±0.2 ºC

 Outlet:

 Cable temp.: -4±0.9 ºC / -2.4±1 ºC

 Cable board temp.: -6.1±0.3 ºC / -0.8±0.4 ºC

 HeatLoads:

 Ambient (CoBra): 298.2 W / 408.8 W

 Ambient (Measured): 389.4 W / NaN W

 Modules: 0 W / 353.7 W
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IBL temperatures for set point -15ºC; Measured data and CoBra simulation results
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Set point = -5°C

33

0 5 10 15 20 25 30

-6

-4

-2

0

2

J
u

n
c
ti
o

n
 B

o
x

M
a

n
if
o

ld
 B

o
x

Flex line IBL v olume

 Inlet:

 Cable temperature: 2.7±0.9 ºC / 4.8±0.8 ºC
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 Ambient (Measured): 201.1 W / NaN W

 Modules: 0 W / 350.2 W

 Miscalaneous:

 Pressure drop: 5.1 Bar / 5.1 Bar

 Massf low: 17.5 g/s / 17.4 g/s
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IBL temperatures for set point -5ºC; Measured data and CoBra simulation results
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Detector temperature offsets wrt

set point
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Module 1 det off

Module 1 det on

Module 2 det off

Module 2 det on

Module 3 det off

Module 3 det on

Module det 4 off

Module det 4 on

Module det 5 off

Module det 5 on

Module det 6 off

Module det 6 on

Module det 7 off

Module det 7 on

Module det 8 off

Module det 8 on

JB return det off

JB return det on

MB return det off

MB return det on

CP outlet det off

CP outlet det on

CP inlet det off

CP inlet det on

MB liquid det off

MB liquid det on

JB liquid det off

JB liquid det on

Cooling pipe 
temperatures

Gradients increase 
as a function of 
cooling temperature 
due to pressure drop 
(Mainly flex lines)

Gradients due to 
stave conduction 
relatively constant 

First modules show a larger and 
more  irregular temperature offset



Whole stave liquid

Start of boiling 
in mod5,6,7 & 8 
after powering 
on

Stave powering, 
same state as 2 
days earlier

mod5,6,7 & 8 
stay in boiling 
after power off

Why did the 
stave became 
liquid at  1 nov
15:21?

Why did boiling 
now propagate 
through the 
whole stave 
suddenly at 3 
nov 12:37?

Stave 14 magic….

Super heating problem

• Boiling is not always fully developed
o This gives irregular temperature behaviour in the 

order of a degree

• This behaviour is not appreciated by the 
alignment people 

• A study is ongoing to understand the issue.

• Mainly a problem after a detector power 
cycle, boiling is developed better in time

3525/05/2016 B. Verlaat

Stave Power

Sensor 
temperatures

Cooling pipe temperatures

Boiling starts (ca 5’C drop)



Why cooling stability is so important 

in the IBL
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• The IBL has a thermal deformation  issue. 

• The deformation amplitude depends upon 
the evaporation set point.

• The dependency is linear and the value is

d=10.6 ± 0.7 mm/ºC

• The cooling is very stable in time (<0.05 
ºC RMS)

https://indico.cern.ch/event/363327/contributions/860749/attachments/722745/9
91997/2015-06-
17_Understanding_the_deformation_issue_of_the_ATLAS_IBL_detector.pptx

Danilo Giugni, FTDM-2015

2015 run

After power cycle



Hypothesis: 

Cross flow problem?
(2nd stave outlet absorbs heat of neighbor stave inlet)
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Ambient

Detector

Ambient

Detector

Ambient

Single evaporator line 
(Lab set-up and expectation)

Counter current
evaporator pairs (IBL)

2-phase exhaust is more powerful 
and attracts ambient heat 
resulting in sub cooling in staves

Boiling starts suddenly

2-phaseliquid



Full scale IBL branch pair set-up in SR1 

• Build up a real size cooling mock-up of the ATLAS IBL stave pair to measure 
boiling front movement phenomena
o Including real size IBL cooling hardware at real orientations and heights

o Spare IBL flex lines

o IBL test dummy stave

• Reproduce current situation as seen in ATLAS to understand current behaviour

• Test solutions to improve current situation in IBL
o Optimize flow

o Optimize manifold

• Important to understand 

phenomena for future systems

**** * ***

**

*

LAPP connector

Braze joint

LAPP connector

Lapp connector at braze location

+ - Direct heating on pipe

Heating with silicon 
heaters on real stave 

2657mm
1412mm

2657mm

D2.2x0.1mm

D2.2x0.1mm

D1.7x0.1mm
D1.7x0.1mm

D1.7x0.1mmD1.7x0.1mmCooling 
station
in SR1

Manifold Box

IBL Cooling 
loop mock-up

Transfer lines



SR1 Setup overview
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Conclusions

• The IBL cooling was successfully installed and commissioned in 

2014.

• The beam-pipe bake out was successful and the IBL temperature 

stayed below -8’C at all time

• It has been running constantly without unplanned interruptions 

during all ATLAS data taking in 2015.

• The system temperature is stable in time (<1C°) but has a bi-stable 

start-up feature (Liquid super heating) 

• The liquid super heating phenomena is studied in a 1:1 Scale IBL 

cooling line pair, both to study solutions for IBL and to understand 

the phenomena for future systems

• There is still some work to be done to make it reliably operate at 

cold temperatures.

4025/05/2016 B. Verlaat



Back-up slides

4125/05/2016 B. Verlaat



1st October: 

Thermal shock incident

• During the final blow test through the 
detector, suddenly after the test was over 
and system was emptying a slug of liquid 
entered the warming up detector.
o A thermal shock happened from 0 to -35’C within a 

minute.

• There was a fear that the IBL was damaged, 
but tests showed that IBL is in a good shape

• It was discovered that expanding liquid from 
the plant causes a constant liquid push after 
a stop. 
o This was seen in small during any stop, but not 

understood where it came from 

• With the IBL at the lowest point the liquid 
ends up where you don’t like to have it.
o Despite having the manifolds high up

• An important lesson was learned not to have 
the detector at the lowest point
o Introduction of siphons might be a better choice 

• In IBL it will be solve with an additional safety 
by-pass short-cutting in and outlet during 
stop
o No pressure build up over the detector causing an 

uncontrolled flow
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Thermal chock

Stave 8&10 not affected 
(Last in manifold)

After chocks in stave 01



Control system

PVSS UNICOS Scada for plant control

PVSS DCS for control room via DIP protocol
(Only important information for user)

PLC control cabinets in USA15

Powering scheme 
including UPS



Plant B and accu rack
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IBL R404a 2-stage chiller unit
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Front side with control cabinet 

and air condenser
Back side with piping

Electronic cabinet Frequency inverter

Air condenser 2-stage compressor

Water cooling

Freon connections



CO2 unit
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Front side with foam box Back side components

CO2 pipes

Pump foam box Pump pallet CO2 pump

Flow meter

3kW heater

Valve

Valve

Back-up cooling

Main cooling



Accumulator unit
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Back side with accumulator and pipingFront side maintenance control box

Maintenance box

Accumulator vesselVacuum pump Service valves

Cooling

Heaters

Level probes



Vacuum transfer line status
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Plant Side

UX15



Junction installation
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3kW dummy load heater

Manual valves



Importing data into Matlab
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Timber PVSS

Matlab post processing 
from Matlab database

Excel post processing from 
Matlab generated excel files
(For public use)



Thermal chain from detector to 

cooling system

• The pressure drop causes a temperature drop which depends on the received heat load. 
o Therefore the cooling pipe CO2 temperature 

is not constant  and has a heat load 

depended offset wrt the cooling set point 
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For the 14 staves the return manifold is the common temperature boundary

Heat load 
+ambient

Silicon C-foam Pipe wall CO2 in 
tube

Manifold

CF-sheet

Accumulator = 
set point

UX15 USA15

Ambient

Offset wrt set-point temperature



Calibration of cooling pipe NTC’s in sector 5
(connect DCS and cooling system sensors together to a 

cold reference)
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Connect 2  NTC ‘s to 
the patch panel near 
manifold box

Connect  1 PT100 to the junction 
box and archive the data using the 
cooling system 

Cool the sensors 
all together in 
glycol bath



Copper block with a PT100 and 
2 NTC sensors dipped in cold 
glycol stored in a Dewar.

Tube to give a dry 
passage for wires.

Dewar

Calibration setup

The glycol was cooled to -40ºC and warmed up 

slowly over time to calibrate over the full range 



The  IBL CO2 cooling system 

Simplified P&ID with temperature sensors

54

Chiller CO2

Transfer line, Ca 100m
Pump 
LPx01

Compressor

Cooling plant Junction boxAccumulator
AC042

dummy load

x50

Manifold box

Odd numbers staves

x04

x08
x46

x16

x36

a28 a30

x20
a24

z36

n24

x42

CVz22

CVx42

EHx42 
EHx43

Heater
EHx06

EHx17

Flow meter
FTx06

PVx08 PVx10

PVx44

MV017

MV018

UX15USA15

DCS sensorsCooling sensors

Even number staves

y28n30A-side C-side

In and outlet lines of different staves 
are thermally connected
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a 1 A-C 14

b 2 C-A 3

c 3 A-C 2

d 4 C-A 5

e 5 A-C 4

f 6 C-A 7

g 7 A-C 6

h 8 C-A 9

i 9 A-C 8

j 10 C-A 11

k 11 A-C 10

l 12 C-A 13

m 13 A-C 12

n 14 C-A 1

x Cooling system

y Average of all

z Common



Typical IBL temperature profile

• The only way to check the NTC’s is with respect to the CoBra model
o The CoBra model predicts the temperature profile of cooling lines

o Pressure drop and heat transfer are analyzed

• As the gradients are heat load depended, a good estimate of the ambient 
heating is required. 55
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CoBra model
CO2 BRAnch model

• The CoBra model chops the cooling 
line in small sections and calculates 
the heat fluxes, pressure drops and 
heat transfers according the local 
properties.

• CoBra works in single and 2-phase

• A simple thermal node network is 
present per pipe section to include the 
thermal conductance of the structure. 
(TFoM)
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R1x

R2x

R3x

R5x R2y+1

R3y+1

R4x R4y+1

R1y+1

R1X+1

R2X+1

R3X+!

R5X+1 R2y

R3y

R4X+1 R4y

R1y

Px+1,Hx+1,Tx+1

Px,HxTx Py+1,Hy+1,Ty+1

Py,Hy,,Ty

T2

3

4

1

Px+1=dPx+1+Px

Hx+1=dHx+1+Hx

dH=Q1/MF

Q1 is calculated in 
the thermal network

2

3

4

The thermal node network calculates the heat influx in 

the cooling pipe based on:
•Applied power Q3 on node 3

•Environmental heating from fixed temperature T4 on node 4
•Heat exchange with another pipe section via R5 between 

nodes 2 and 2 of the connected sections

Tenvironement

TCO2

R1≈HTCCO2

R2 ≈ Tube wall

TCO2

R1b≈HTCCO2

R1a≈HTCCO2

R4 +R3 ≈

Insulation+HTCair

1. Concentric line 

Tenvironement

TCO2 TCO2

R4 +R3 ≈ Insulation+HTCair

R5≈Heat exchange

R1≈HTCCO2

R2 ≈ Tube wall

2. Bundled lines

Tenvironement

TCO2

R4 +R3 ≈ HTCair
R1≈HTCCO2

R2 ≈ Tube wall

3. Bare tube

Tenvironement

R4≈HTCair

R2 +R3 ≈ TFoM

R1 ≈ HTCCO2

TCO2

Q3 ≈Applied power

4. Stave

The different pipe section modeled in the thermal node network 


